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Introduction and motivation

Observationµthe interannual variability of WBCs

Theoretical studiesµVeronis (1963), Charny and Flierl (1981)

Wind-driven double-gyre system

Figure 1: Wind stress τx = −τ0cos(2πy/D).

The reduced-gravity shallow
water model

Figure 2: Reduced gravity
shallow water model
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Upper-ocean model

Model Domain - Rectangular basin
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Upper-ocean model

The upper layer of the ocean is driven by a zonal wind stress, τx.

τx = −τ0cos(2πy/D) (5)

where τ0 is the amplitude, τx is constant in time, but varies with latitude.
R: Rayleigh-type bottom friction scaled by R (Stommel, 1948)
A: Laplace-type lateral viscosity scaled by A (Munk, 1950).
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Upper-ocean model - The boundary condition

The tangential boundary condition is a linear combination of tangential
velocity and stress:

γv + (1− γ)LD
∂v

∂x
= 0 at x = 0, L (6)

γu+ (1− γ)LD
∂u

∂y
= 0 at y = 0, D (7)

where 0 6 γ 6 1, γ = 0 for the free-slip (no stress) and γ = 1 for the
no-slip condition. LD is the viscous-dissipation length.
(For simplicity, we use γ = 1 to analyse.)
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Upper-ocean model

A convenient description of the globally oscillatory behavior of the system
can be given in terms of total energy, and the total energy equation for the
vertically integrated motion is

∂(PE +KE)

∂t
= L + R + W (8)

Where
PE =

〈ρ
2
g′(h−H)2

〉
,Potential energy

KE =
〈ρ

2
h(u2 + v2)

〉
,Kinetic energy

L =
〈
ρA(u∇2U + v∇2V )

〉
, Lateral friction

R =
〈
−ρRh(u2 + v2)

〉
,Bottom friction

W = 〈uτx〉 ,Wind stress

(Note that the angle brackets denote a horizontal average over the entire basin)
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Numerical results - a. Linear and nonlinear steady solutions

Figure 3: Steady-state upper-layer thickness h for (a) linear case and (b) nonlinear case; ατ = 0.95, αA = 1.3; (c) and
(d) are the enlarged insets corresponding to (a) and (b) with R line and the C point marked by a straight solid line and an oval,
respectively. Solid curve stand for h > 500.
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b. Multiple equilibria

Figure 4: The h plot for multiple steady state in the nonlinear case; ατ = 0.9, αA = 1.3. The initial state for (a) is a
state of rest, while that for (b) is the same as Figure 3. Solid curves, dashed curves, and contour interval as in Figure 3.
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c. Bifurcation diagram

Figure 5: Bifurcation diagram for the position of C
point, as a function of wind stress (αA = 1.3).

Figure 6: Catastrophe diagram in terms of the viscosity
parameter αA and the wind-forcing parameter ατ
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d. Periodic solutions

Figure 7: The periodic variations of h along
x = 80 km for 48 years. The parameter values are
ατ = 0.8, and αA = 1.0. Solid and dashed lines as in
Figure 3; contour interval is 20m.

Figure 8: Time evolution of spatially averaged (a) energies

(1012J ·m2) and (b) energy rates (1015J ·m2s−1);
ατ = 0.8 and αA = 1.0. Panel a: thick line for available
potential energy; thin line for kinetic energy; Panel b: thin line
for frictional loss due to viscosity; dashed line for Rayleigh
friction; thick line for wind forcing.
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e. Aperiodic solutions

Figure 9: Time evolution of spatially averaged (a)(c)
energies and (b)(d) energy rates;(a)(b):ατ = 0.95 and
αA = 1.0. Panel a: thick line for available potential energy;
thin line for kinetic energy; Panel b: thin line for frictional loss
due to viscosity; dashed line for Rayleigh friction; thick line for
wind forcing.

Figure 10: The variations of h along x = 80 km for 48
years. The parameter values are ατ = 0.95 and αA = 1.0.
Solid and dashed lines as in Figure 3; contour interval is 20m.
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Analytic results - a. Truncated QG model

We reduced the original equations to low order ones with QG
approximation:

∂u

∂t
+ v · ∇u = −g′∂h

∂x
+ fv −Ru+

τx

hρ
(9)

∂v

∂t
+ v · ∇v = −g′∂h

∂y
− fu−Rv (10)

∂h

∂t
= −∇ · (hv) (11)

Comparing to Eq.(1)-Eq.(4), we can know that we set A = 0, ατ = 1.

�� êZû 4+ (CESS) Multi-Equi P&Ap Solut in WD DG SWM November 17, 2014 13 / 22



a. Truncated QG model

The dimensionless QG equation corresponding to Eq.(9)-Eq.(11) is

∂

∂t
(∇2 − λ2)ψ +R0J [ψ, (∇2 − λ2)ψ] +

∂ψ

∂x
= −ε∇2ψ + wf (12)

wf = − ∂

∂y

(
τx

h

)
(13)

ψ ⇒ streamfunction
J ⇒ Jacobian

L ⇒ horizontal scale
H ⇒ vertical scales
W ⇒ scale of the wind stress

(t, x, y, h, τx, ψ) in Eq.(12)-Eq.(13) are scaled by (β−1L−1, L, L,H,W,
Wρ−1β−1H−1)
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a. Truncated QG model

The nondimensional parameter are defined as

R0 =
W

ρHβ2L3
, ε =

R

βL
, λ =

L

LR
(14)

LR =
√
g′H/f0⇒ internal Rossby

radius of deformation
R0⇒ Rossby number, measure the
effects of nonlinearity

ε ⇒ frictional parameter, measure
the effects of fraction
λ2⇒ rotational Froude number

The boundary condition of no-normal flow requires that ψ varnish on all
sidewalls, that is

ψ = 0

{
on x = 0, π
on y = 0, π

(15)
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a. Truncated QG model

We retain Veronis(1963) sine expansion in y direction, but a decaying
exponential in x direction to account for the zonally asymetric structure.
The limited set of basis functions used yields the expansions

ψ = A(t)F (x)siny +B(t)F (x)sin2y
F (x) = e−axsinx

(16)

wf = −w1(x)siny − w2(x)sin2y (17)
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a. Truncated QG model

dA
dt − µAB + νA = η1
dB
dt − µA

2 + νB = η2
(18)

where

µ =
2aR0

πλ2
1 + e−aπ

1 + a2
, ν =

2a

πλ2

η1 =
F1

πλ2
, η2 =

F2

πλ2

F1 =

∫ π

0
w1e

axsinxdx

F2 =

∫ π

0
w2e

axsinxdx

so that µ and ν are positive constants.
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a. Truncated QG model

Eq.(18) can yields a steady states:

µAB − νA = −η1
µA2 + νB = η2

(19)

By eliminating B from Eq.(19), we can derive a cubic equation for A,

µ2A3 + (ν2 − µη2)A− νη1 = 0 (20)

V Pitchfork bifurcation equation
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Analytic results - b. Bifurcation diagrams

µ2A3 + (ν2 − µη2)A− νη1 = 0

1) Purely symmetric wind stress curl
if w1 = 0 and η1 = 0, the steady
state solutions are{

A1 = 0 for all η2

A2,3 = ±
√
µη2−ν2
µ for η2 > ν2

µ

⇒ ηa = ν2

µ bifurcation point
(see Figure 11 (a))

2) Nearly symmetric wind stress curl
If w1 6= 0 and η1 6= 0, the nature of the
solutions of equation depends on the

discriminant ∆ ≡ ( νη1
2µ2

)2 + (ν
2−µη2
3µ2

)3

∆ < 0⇒ η2 > ηb = ηa + rη
1/3
a η

2/3
1

r = 3
3√4
≈ 1.9. Three real solutions

if η2 < ηb, one root is real and two
other roots are complex conjugate.

ηb is a saddle-node bifurcation point.
(see Figure 11 (b))
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b. Bifurcation diagrams

Figure 11: Analytic results for the simplified model: (a) pitchfork bifurcation with respect to η2 when the wind stress is
purely symmetric; (b) perturbed pitchfork bifurcation when the wind stress includes a small asymmetric component; (c)
back-to-back saddle-node bifurcations with respect to η1 at fixed η2 > 0; and (d) the monotonic relation between the (unique)
real steady solution and η1 when the antisymmetric wind stress is dominant.
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Discussion and conclusions

Classical linear theory don’t agree with many realistic nonlinear
observations.

Many theories try to explain these nonlinear behaviors to topography
and other external forcings such as asymmetric wind.

But the author think that the intrinsically nonlinear dynamics play a
important role in determining the behaviors of WBCs.

So this paper study the nonlinear behaviors of WBCs, including single
equilibria, multiple equilibrias, periodic and aperiodic solutions.

The exact physical causes for the separation and the contribution of
intrinsic nonlinearity are still unclear.
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The End

Thanks
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