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1 Barotropic instability: Consider flow on the region y € [L, L], which lies entirely within the Northern
hemisphere. (Azes have been chosen such that x points east, y points north and y = 0 lies at the
centre of the domain and not at the equator). Consider the following two velocity profiles of zonal
flow:

Ui(y) = Uo(y/L)?
exp(Ay)
U. =Up————
2(y) 07 F exp(\y)
where Uy and A are positive constants. By referring to Rayleigh’s Theorem and Fjortoft’s theorem,

discuss whether barotropic instability is possible for each of these flows. Does it make a difference
to your answer whether you consider the flow to be on a B-plane or an f-plane?

Solution:

According to Rayleigh’s theory, if (U,, — ) never change sign for all y, then the flow is stable all
the time.

According to Fjortoft’s theorem, if (Uy, — 3)(U — Us) > 0 for all the y, then the flow is stable all
the time, where Uy is U(y,) satisfying that Uy, = § at point y = ys.

For Uy,

6U
U, (y)yy = T;y

Because the Ui (y) and Ui (y)y, are both monotonically increasing, so when y > y,, both Uy, > 3
and U > U, hold, so (Uyy — B8)(U — Us) > 0; when y < y,, both Uy, < § and U < U; hold, so
(Uyy — B)(U — Us) > 0. Therefore, (Uy, — B)(U — Us) > 0 for all the y, indicating that the flow is
stable.
For Uy,

Aexp(Ay)
(14 exp(Ay))?
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Us(y)y = Uo >0

UQ(y)yy =Uy

The barotropic instability is possible for Us.
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2 Baroclinic instability: Give a full account of the Fady model of baroclinic instability for inviscid flow
on an f-plane with constant buoyancy frequency N. (That is, starting from the quasi-geostrophic
potential vorticity equation, go through the details of the derivation that is sketched in the lecture
notes.)

Solution: We assume a layer z € [-H/2, H/2] with rigid boundaries at the ground and the
tropopause. The basic state is zonal shear flow u = (Az,0,0), which follows that a suitable basic
state streamfunction is

,l/] = _Ayza
with corresponding basic state pressure field is
AH
p=pofot +po — W-
Now consider the perturbed state
U u’
v=Ayz+v¢", u=[0]+ [
0 w’
According to hydrobalance equation, we have
dp
7, = Pofot= = —pg,
hence s s
PoJo PoJo
p= = ——(Ay +97) (4)
Plugging in to the Quasi-Geostrophic Potential Vorticity (QGPV) equations, that is
9 0 12
U— ) (v ! 0 =0 5
With mass conservation, that is ﬁ = 0, hence
0 0
U — — — — 0 6
U by '] o= ©)

With boundary conditions at w’ = 0 at z = £H/2, and plug equation into equation @, hence

0 2\ ;o B
(8t+U8>wZ+A¢“”O at z = +H/2 (7)

Try a solution of the form
' = ®(2) exp(ikx — iwt)

Plugging into equation 7 then

Nk
., — K*® =0, where K = —, (8)
Jo
so the solution must take the form
®(z2) = AcoshKz + BsinhKz 9)
Plugging U = Az, k = fo K/N and equation @ into , hence
foA . ) fo : _ _H
(—iw + ZTKz)(AK sinh Kz + BK cosh Kz) + ZW K(AcoshKz + BsinhKz) =0 onz= :I:?

Rewritten the equation above, hence

(— zw+zf°AKH)Ksmh +z/;{;“KcoshKH (— szrszAKH)Kcosh +1Af°KsmhKH Al
(M-l-ZM)Ksmh KH—i—zA Kcosh®H (zw—i—zfgzll\fH)Kcosh K _ AfOKsmhKH B|
(10)



Because A, B are nonzero, so the determinant of first matrix must be 0, that is

242 242 2A2 772 12 242
5 foANKH KH  f§A°KH KH  f§A°K°H 2f5A°
—2w* + e tanh 5 + e coth 5 + o2 + Nz = 0
Divided by sinh % cosh % in both sides. Hence
242 2772
s foA* (KH KH KH KH K*H
w’ = N2 ( 5 tanh 5 + 5 coth 5 + 1 +1],
that is
2A? KH KH KH KH KH KH

w? = _f?\ﬂ (coth ) ) ( 5 tanh 2) (Consindering coth — tanh — = 1)

which is the dispersion relation for w as a function of K.

Wind-driven ocean circulation: Consider the Atlantic Ocean to be a rectangular basin, centred on
35N, of longitudinal width L, = 5000km and latitudinal width L, = 3000km. The ocean is subjected
to a zonal wind stress of the form

T(y) = 7 cos 22
z\Y) = To Ly
Ty(y):()

where 79 = 0.1Pa. Assume a constant value of B = df /dy appropriate to 35N, and that the ocean

has uniform density p = 1000kg - m~3.

e Derive the Sverdrup relation, and hence determine the magnitude and spatial distribution of
the depth-integrated meridional flow velocity in the interior of the ocean.

o Using the depth-integrated continuity equation, and assuming no flow at the eastern boundary
of the ocean, determine the magnitude and spatial distribution of the depth integrated zonal
flow in the interior.

o [f the return flow at the western boundary is confined to a width of 100km, determine the
depth-integrated flow in this boundary current.

o Ifthe flow is confined to the top 500m of the ocean (and is uniform with depth in this layer), de-
termine the northward components of flow velocity in the interior, and in the western boundary
current.

o Compute and sketch the pattern of Ekman pumping implied by the idealized wind pattern given
above.

Solutions:

(1) The governing equations are

\Y%

TP gy,
Po Po
V-u=0

f=/fo+ By

. . . . . 2
Here, we assume that vertical shear dominates in the frictional term VZu ~ %u, so the
governing equations will become

fxu=-
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@, — ®,, and with @ and @, we have
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Suppose the depth of the ocean is D, so the boundary condition at z = —Disw = u, = v, = 0.
At surface (z = 0), the boundary condition is w = 0, (u,,v,) = 7/p = (72, 7y) /1. Integrate @
from z = —D to z = 0, we have

B/ vdz—/ fwzdz+f/7 (Vg — Uy)z2dz

B 1 ory 01y
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So the depth-integrated meridional transport is proportional to the curl of the wind stress.

Hence

Plugging into 7, and 7,, hence

T To Sin ik
= o sin =2
6POLy Ly
Because 8 = mi%)‘“ =1.87x107""m~ 1571, so the V is
mx 0.1 7r Y
V= 187 % 101 x 10° x 3000 x 108 ", — >0sin g
Integrate the @), we have
0 0
/ (up +vy)dz = —/ w,dz =0,
—D —-D
hence
U, +V, =0,
where U is depth-integrated zonal flow. Hence
210 Y

Uy,=-V, =— cos —=
Y ﬂpoLf, L,

Integrate with x with the boundary condition z = L,,U = 0, hence

27 Yy
U=- xr — L,)cos —=

The northward volume flux in the ocean interior is

L

- L, Y
Vn = Vde = —— =
N /0 T = Bl To Sin L,

If the return boundary flow has velocity V,., uniform over a width L, = 100km, because the
volume fluxes must be the same (direction is opposite), hence

V.L.=—-Vxn
wL, . TY 9 1y . TY
V, = ————79sin — ~ —(280m~s sin —
BpOLyLr 0 Ly ( ) Ly

If the flow is confined to the top h = 500m of the ocean and is uniform with depth in this
layer, so the northward components of flow velocity is

. . \%4 T . Y 1y . TY
In the interior: v = — = 7o sin — = (0.011ms sin —
h  BpoLyh L, ( ) L,
Vi .
In the western boundary: v = = mm sin Z; —(0.56ms™ 1) sin Z—z:
In deep ocean, approximately geostrophic is satisfied, ) will become
B” = fwz

So Coriolis parameter 3, combined with a meridional Ekman transport v can determine the
horizontal divergence or convergence.
convergent flow



