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1 Dimensional analysis

Show from first principles (i.e. using formulae from school physics where necessary) that the scale height
of the atmosphere RT0/g has units of length, and that the dry adiabatic lapse rate g/cp has units of
absolute temperature per unit length.

Solution: (a) [
RT0

g

]
=

[
J · kg−1 ·K−1 ·K

m · s−2

]
=

[
J · kg−1

m · s−2

]
(1)

As we know,

work = force× distance⇒ [J ] = [N ·m]

force = mass× acceleration⇒ [N ] = [kg ·m · s−2]

hence,

[J ] = [kg ·m · s−2 ·m] = [kg ·m2 · s−2] (2)

Substitute (2) into (1), [
RT0

g

]
=

[
kg ·m2 · s−2 · kg−1

m · s−2

]
= [m]

So RT0/g has the units of length.

(b) [
g

cp

]
=

[
m · s−2

J · kg−1 ·K−1

]
=

[
m · s−2

kg ·m2 · s−2 · kg−1 ·K−1

]
=
[
K ·m−1

]
⇐ (use(2))

So the dry adiabatic lapse rate g/cp has units of absolute temperature per unit length.

2 Planetary energy balance

Consider the following data: The solar constant (radiative flux reaching top of earths atmosphere) is
S0 = 1370W.m−2. Data for other planets are... If these planets had no atmospheres, and all had a
uniform albedo a = 0.05, what would be their surface temperatures?

Solution: Assume the radius of earth is r, according to the Stefan-Boltzman law,

πr2(1− a)S = 4πr2σT 4

where σ = 5.67× 10−8W ·m−2 ·K−4, hence

T =

(
(1− a)S

4σ

) 1
4

(3)

so the surface temperature of earth is

Tearth =

(
(1− 0.05)× 1370

4× 5.6× 10−8

) 1
4

≈ 276K
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According to inverse square law, the radiative flux by other planets is

Svenus
Searth

=

(
Rearth
Rvenus

)2

where R is the distance between planet and the Sun. Use (3), we could get

Tvenus
Tearth

=

(
Svenus
Searth

) 1
4

=

(
Rearth
Rvenus

) 1
2

Tvenus =

(
Rearth
Rvenus

) 1
2

Tearth

So the temperature of Venus is

Tvenus =

(
1

0.72

) 1
2

× 276 = 325K

similarly, we could get

Tmars =

(
1

1.52

) 1
2

× 276 = 224K

Tjupiter =

(
1

5.20

) 1
2

× 276 = 121K

3 Geopotential thickness

Estimate typical values for the geopotential thickness of the 1000-500 hPa layer,
(a) when the surface temperature is 0◦C.
(b) when the surface temperature is 20◦.
By how much would the geopotential thickness of the 1000-500 hPa layer increase under uniform

heating by 1◦C.
Solution: According to hypsometric equation,

Z2 − Z1 =
RT̄

g0
log

p1

p2

we assume the temperature is constant between different layers, so
for case (a)

Z2 − Z1 =
287.04J · kg−1 ·K−1 × 273.15K

9.8m · s−2
log

1000hPa

500hPa
= 5545.5m

for case (b)

Z2 − Z1 =
287.04J · kg−1 ·K−1 × 293.15K

9.8m · s−2
log

1000hPa

500hPa
= 5951.6m

If 1000-500 hPa layer increasender uniform heating by 1◦C, then

∆(Z2 − Z1) =
R∆T̄

g0
log

p1

p2
=

287.04J · kg−1 ·K−1 × 1K

9.8m · s−2
log

1000hPa

500hPa
= 20.3m

so the geopotential thickness will increase 20.3m.

4 Adiabatic compression

Concorde used to fly at a pressure of around 100 hPa, where the typical air temperature is around -
50◦C. If the cabin pressure in Concorde is around 850 hPa, what would be the consequences of adiabatic
compression of the outside air to provide ventilation?

Solution: From Poisson equation

p

p0
=

(
T

T0

) cp
R

=

(
ρ

ρ0

) cp
cv

(4)
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we could get

T =

(
p

p0

) R
cp

T0 =

(
850hPa

100hPa

) 287J·kg−1·K−1

1003J·kg−1·K−1

× (273.15− 50)K = 411.67K = 138.5◦C

so the temperature will increase from -50◦C to 138.5◦C.
According to the ideal gas law, the original density of the atmoshphere outside is

ρ0 =
p

RT0
=

100hPa

287J · kg−1 ·K−1 × 223.15K
= 0.156kg/m3

After the adiabatic compression, the density ρ will be

ρ =

(
p

p0

) cv
cp

ρ0 =

(
850hPa

100hPa

) 716J·kg−1·K−1

1003J·kg−1·K−1

× 0.156kg/m3 = 0.719kg/m3

5 Buoyancy frequency

Show that, for an isothermal atmosphere, the square of the Brunt-Väisäla frequency is given by

N2 =
g2

cpT0

The isothermal atmosphere is one of the most stable profiles observed in the atmosphere (for example,
in the lower stratosphere), and so this provides an upper bound for the buoyancy frequency. Hence show
that typical buoyancy periods are longer than ∼5 minutes.

Solution: From the Brunt-Väisäla frequency we could get

N =
g

(cpT0)1/2

Period =
2π

N
=

2π(cpT0)1/2

g

Because the typical temperature of lower stratosphere is about -60◦C, so the buoyancy periods is

Period =
2π × (1003J · kg−1 ·K−1 × 213.15K)1/2

9.8m · s−2
= 296.4s ≈ 5min

If T0 increases, the periods will increase as well, so the typicl buoyancy periods are longer than 5
minutes.

6 Diurnal radiative cycle

Consider the diurnal (daily) cycle of shortwave radiation absorbed at a fixed point on the earths surface.
Let τ (=24 hours = 86,400 seconds) be the length of the day/night cycle, and let d be the time between
sunrise and sunset. Set t = 0 to be sunrise, and assume that the diurnal cycle of absorbed shortwave
radiation I(t) (W ·m−2 ) is given by:

I(t) =

 I0sin
πt

d
t ∈ [0, d]

0 t ∈ [d, τ ]

In this question we will consider a simple model for changes in surface temperature T (t) during the day
and night.

(a) Suppose that the sun lies at an angle π/2−φ above the horizon at noon. Give an expression relating
I0 to the solar constant S = 1370W ·m−2 , albedo a and angle φ. Give a sketch graph to describe
qualitatively how d and φ vary throughout the year.

Solution:
I0 = S(1− a)cosφ
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Figure 1: Illustration of d in a year

Figure 2: Illustration of φ in a year

(b) Show that the dailymean absorbed shortwave radiation is

Ī =

(
2d

πτ

)
I0.

Solution: According to conservation law,

Īτ =

∫ τ

0

I(t) =

∫ d

0

I0sin
πt

d
dt = −dI0

π
cos

πt

d

∣∣∣t=d
t=0

=
2d

π
I0

⇒ Ī =

(
2d

πτ

)
I0

(c) By referring to standard formulae, explain why

T̄ =

(
Ī

εσ

)1/4

is a reasonable definition of typical surface temperature.

Solution: Assume that an area A, the total energy which can obsorbed in day and night is ĪA,
according to Stefan-Boltzman law, the energy emitted by this area in the whole day is εσT̄ 4A.
Using energy coservation law, we could get

ĪA = εσT̄ 4A

=⇒ T̄ =

(
Ī

εσ

)1/4

.

So T̄ is a reasonable definition of typical surface temperature.

(d) Explaining clearly any approximations you make, show that

O(t) = εσT̄ 4 + 4εσT̄ 3(T (t)− T̄ )
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is a reasonable expression for the outgoing longwave radiation from the surface.

Solution: According to Stefan-Boltzman law, the outgoing longwave radiation is

O(t) = εσ[T (t)]4

If we seem T (t) as a whole and define

f(T (t)) = εσ[T (t)]4

and expand f(T (t)) at T̄ as a Taylor series, so we could get

f(T (t)) = εσT̄ 4 + 4εσT̄ 3(T (t)− T̄ )

=⇒ O(t) = εσT̄ 4 + 4εσT̄ 3(T (t)− T̄ ) (5)

(e) Assuming that the diurnal temperature cycle is periodic (i.e. that there is no difference between
subsequent days), show that the dailymean outgoing radiation is

Ō = εσT̄ 4.

Solution: Define T (t) as a periodic function, whose period is τ , and

T̄ =

∫ τ
0
T (t)dt

τ
(6)

Rewrite (5) as
O(t) = −3εσT̄ 4 + 4εσT̄ 3T (t) (7)

If we integrate between (7) and divide them by τ , we could get

Ō =

∫ τ
0
O(t)dt

τ
=

∫ τ
0
−3εσT̄ 4dt

τ
+

∫ τ
0

4εσT̄ 3T (t)dt

τ

= −3εσT̄ 4 + 4εσT̄ 3

∫ τ
0
T (t)dt

τ

= −3εσT̄ 4 + 4εσT̄ 4 (use (6))

= εσT̄ 4

(f) Suppose that the surface temperature evolves according to the governing equation

c
dT

dt
= I(t)−O(t)

where c = 4× 106J.m−2.K−1 is an effective heat capacity per unit area. Explain how the absorbed
shortwave radiation can be rewritten in complex form as

I(t) =

 − iI0exp
iπt

d
t ∈ [0, d]

0 t ∈ [d, τ ]

where i =
√
−1. (By convention, it is assumed that only the real part of this expression has physical

meaning.)

Solution: As we know,

exp
iπt

d
= cos

πt

d
+ isin

πt

d

hence

I(t) = −iI0exp
iπt

d
= −iI0

(
cos

πt

d
+ isin

πt

d

)
= I0sin

πt

d
− iI0cos

πt

d
t ∈ [0, d]

the real part is the same as before, so the I(t) could be rewritten as complex form.sun
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(g) Define the constant B = 4εσT̄ 3.

By reference to the governing equation, give a physical interpretation of the quantity c/B.

Show that a solution of the form

T (t) =


(
a0 + a1exp

−Bt
c

+ a2exp
iπt

d

)
I0
B

t ∈ [0, d](
a3 + a4exp

−Bt
c

)
I0
B

t ∈ [d, τ ]

(8)

satisfies the governing equation for suitable (possibly complex) constants a0, ..., a4. Calculate ex-
pressions for these constants which are functions of dimensionless ratios (such as Bd/c and Bτ/c).

Solution: Substitute B, O(t) and I(t) into the governing equation, we can get

c
dT

dt
= I(t)−O(t) =


− iI0exp

iπt

d
−BT (t) +

3

4
BT̄ t ∈ [0, d]

−BT (t) +
3

4
BT̄ t ∈ [d, τ ]

hence

c

B

dT (t)

dt
=


− i I0

B
exp

iπt

d
− T (t) +

3

4
T̄ t ∈ [0, d]

− T (t) +
3

4
T̄ t ∈ [d, τ ]

(9)

Recall B, Ī =
(

2d
πτ

)
I0 and T̄ =

(
Ī
εσ

)1/4

, we can get

εσT̄ 4 =
2dI0
πτ

B
T̄

4
=

2dI0
πτ

=⇒ T̄ =
8d

πτ

I0
B

(10)

Substitute (8), (10) to (9), we could get

c

B

dT (t)

dt
=


− i I0

B
exp

iπt

d
− T (t) +

6d

πτ

I0
B

t ∈ [0, d]

− T (t) +
6d

πτ

I0
B

t ∈ [d, τ ]

c

B

dT (t)

dt
=


− i I0

B
exp

iπt

d
−
(
a0 + a1exp

−Bt
c

+ a2exp
iπt

d

)
I0
B

+
6d

πτ

I0
B

t ∈ [0, d]

−
(
a3 + a4exp

−Bt
c

)
I0
B

+
6d

πτ

I0
B

t ∈ [d, τ ]

c

B

dT (t)

dt
=


(
−a1exp

−Bt
c
− (i+ a2)exp

iπt

d
+

6d

πτ
− a0

)
I0
B

t ∈ [0, d](
−a4exp

−Bt
c

+
6d

πτ
− a3

)
I0
B

t ∈ [d, τ ]

(11)

Differentiate at both sides of (8), we could get

c

B

dT (t)

dt
=


(
−a1exp

−Bt
c

+ ia2
πc

Bd
exp

iπt

d

)
I0
B

t ∈ [0, d](
−a4exp

−Bt
c

)
I0
B

t ∈ [d, τ ]

(12)

Compare (11) and (12), we could get

a0 =
6d

πτ
, −(i+ a2) = ia2

πc

Bd
, a3 =

6d

πτ
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=⇒ a0 =
6d

πτ
, a2 = −

i+ πc
Bd

1 +
(
πc
Bd

)2 , a3 =
6d

πτ

When t = d, we could get

T (d) =


(
a0 + a1exp

−Bd
c
− a2

)
I0
B(

a3 + a4exp
−Bd
c

)
I0
B

=⇒ a0 + a1exp
−Bd
c
− a2 = a3 + a4exp

−Bd
c

a0 + a1exp
−Bd
c
−Real(a2) = a3 + a4exp

−Bd
c

πc
Bd

1 +
(
πc
Bd

)2 = (a4 − a1)exp
−Bd
c

=⇒ a4 − a1 =
πc
Bd

1 +
(
πc
Bd

)2 exp
Bd

c
(13)

If T (t) is periodic, so T (0) = T (τ), that is

a0 + a1 +Real(a2) = a3 + a4exp
Bτ

c

=⇒ a1 +Real(a2) = a4exp
Bτ

c
(14)

Using (13) and (14), we could get

a1 =
πc
Bd

1 +
(
πc
Bd

)2
(

1− expBdc
1− exp−Bτc

− exp
Bd

c

)

a4 =
πc
Bd

1 +
(
πc
Bd

)2 1 + expBdc
1− exp−Bτc

The physical meaning of the c/B is the e-folding decay time of the temperature.

(h) Use suitable software to plot T (t) for t ∈ [0, τ ] for reasonable values of the input parameters.
Hence, and with reference to the governing equation, discuss why it is that the coldest part of the
day occurs slightly after sunrise. Give an estimate for the time lag between sunrise and the coldest
part of the day.

In Figure 3, the parameters are φ = π/6, ε = 0.3, d = 14h, and we assume that the temperature are
periodic during different days.

Explanation: According to the governing equation and structure of T (t), we could find that the
temperature is decaying all the time. After decayed for a whole night, the temperature becomes
very low. In addition, slightly after the sun rise, the incoming energy is not strong enough (I(t) <
B(t)), so the temperature will still decrease, until the sun is strong enough (I(t) > B(t)) to keep
temperature to increase. That’s why the coldest part of the day occurs slightly after sunrise.

The time lag between the sunrise and the coldest part of day is about 99 minutes in this figure.
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Figure 3: Illustration of temperature in a day

7 Moist thermodynamics and tephigrams

(a) what is the pressure at the tropopause?

According to the profile of T, the temperature doesn’t decrease and remain almost the same from
30kPa, so the pressure of the tropopause is about 30kPa.

(b) what parts of the ascent are stable for (a) dry air, and (b) for saturated air?

For (a) dry air, the 100 kPa-95 kPa is stable, 95 kPa-68 kPa is unstable, 68kPa above is stable.

All the parts of ascent are stable for (b) saturated air.

(c) what is the humidity (a) at 100 kPa, and (b) at 50 kPa.

The humidity at (a) 100 kPa is 9.4 g/Kg and (b) at 50 kPa is 1.6 g/Kg.

(d) If air at the surface is heated during the following day and then rises adiabatically, at what level
will condensation occur?

The condensation will occur at 97 kPa.

(e) What will be the level of the top of any convective clouds which form during the day?

The level of the top of any convective clouds is at least 68 kPa.

(f) Suppose that the column of air in the radiosonde data is forced to ascend over a range of mountains.
Consider the layer of air initially between 78kPa and 70kPa. Show that is stable for both dry and
saturated ascent. Suppose the layer is forced to rise by 10kPa in pressure units. Explain why the
layer will remain 8kPa deep in pressure units. Find the new temperatures of the bottom and top of
the layer, by taking them up the dry adiabat until they become saturated, and then up the moist
adiabat. Show that the layer is now unstable with respect to saturated ascent.

According to the hydrostatic balance, the net pressure of the layer of air is balanced with the gravity
of it, so when the layer is rise 10kPa in pressure units, the mass of the layer doesn’t change, so
the gravity of it doesn’t change, so the pressure difference between bottom and top will remain the
same.

The new temperature of the bottom is −3.8oC, and the temperature of top is −12oC.

(g) Take air from the surface up the dry adiabat to the lifting condensation level (Normands point), and
then up the moist adiabat until to the level of free convection, and then the level of neutral buoyancy.
Estimate the convective inhibition (CIN) and convective available potential energy (CAPE) in this
case.

From P0 to PLFC , we could estimate

CIN = R
|T − Tp|

P̄
∆P = 287.04J · kg−1 ·K−1 × 0.3K

97.5kPa
× 50kPa = 44.16J · kg−1
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From PLFC to PLNB , we could estimate

CAPE = R
|T − Tp|

P̄
∆P = 287.04J · kg−1 ·K−1 × 0.6K

81.5kPa
× (95− 68)kPa = 57.06J · kg−1

8 Temperature inversion in the stratosphere

Consider a model for plane-parallel atmospheric radiation in which longwave (infrared) radiation is rep-
resented by L ↑ and L ↓ , and in which shortwave radiation is split into two bands: ultraviolet (U ↑ and
U ↓) and visible (V ↑ and V ↓). Let B denote longwave blackbody emission by the atmosphere, and let
x be LW optical height in the atmosphere.

(a) Show from the definition of optical depth that x = x0(1− exp(−z/H)).

Solution:

x =

∫ z

0

kρdz = k

∫ z

0

ρ0exp(−z/H)dz = kρ0(−H)exp(−z/H)

∣∣∣∣z
0

= kρ0H(1− exp(−z/H))

and

x0 =

∫ ∞
0

kρdz = k

∫ ∞
0

ρ0exp(−z/H)dz = kρ0(−H)exp(−z/H)

∣∣∣∣∞
0

= kρ0H

so
x = x0(1− exp(−z/H))

(b) Solution: Assuming that visible light is not attenuated by the atmosphere, justify the following
governing equations:

dU ↓
dx

=
y0

x0
U ↓

dU ↑
dx

= − y0

x0
U ↑

dV ↓
dx

= 0

dV ↑
dx

= 0

dL ↓
dx

= −B + L ↓

dL ↑
dx

= B − L ↑

Assume y is the UV optical height of atmosphere, and similar to the x = x0(1−exp(−z/H)), which
is the LW optical height of atmosphere, we could get

y = y0(1− exp(−z/H))

Because y is the optical depth to UV, according to Beer-Lambert law, we could get

dU ↓
dy

= U ↓, dU ↑
dy

= −U ↑

=⇒ dU ↓
dx

=
dU ↓
dy

dy

dx
=

dy

dx
U ↓=

y0
H exp(−z/H)dz
x0

H exp(−z/H)dz
U ↓= y0

x0
U ↓

dU ↑
dx

=
dU ↑
dy

dy

dx
= −dy

dx
U ↑=

y0
H exp(−z/H)dz
x0

H exp(−z/H)dz
U ↑= − y0

x0
U ↑

Because visible light is not attenuated by the atmosphere, so

dV ↓
dx

= 0,
dV ↑
dx

= 0

As for the Longwave radiation, because the earth also emits black-body radiation B, so B should
be included into the equation, and we could get

dL ↓
dx

= −B + L ↓, dL ↑
dx

= B − L ↑
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(c) Solution:
S ↓= V ↓ +U ↓

Because
dV ↓
dx

= 0

hence V ↓= constant. At the TOA, we could get

V ↓= βS0

Recall that
dU ↓
dx

=
y0

x0
U ↓

hence
dU ↓
U ↓

=
y0

x0
dx

d logU ↓= y0

x0
dx

logU ↓= y0

x0
x+ C (C is constant)

At TOA, x = xTOA = x0, U ↓= (1− β)S0, hence

C = log((1− β)S0)− y0

=⇒ U ↓= (1− β)S0exp(−y0)exp(y0x/x0)

Hence
S ↓= V ↓ +U ↓= βS0 + (1− β)S0exp(−y0)exp(y0x/x0)

Similarly, because dV ↑
dx = 0, so V ↑= constant. At the surface, that is x = 0, we could get

V ↑= αV ↓
∣∣∣∣
x=0

= αβS0

Recall that
dU ↑
dx

= − y0

x0
U ↑

dU ↑
U ↑

= − y0

x0
dx

d logU ↑= y0

x0
dx

logU ↑= − y0

x0
x+ C (C is constant)

At surface, x = 0, U ↓= (1− β)S0exp(−y0), U ↑= α(1− β)S0exp(−y0), hence

C = log(α(1− β)S0)− y0

=⇒ U ↑= α(1− β)S0exp(−y0)exp(−y0x/x0)

Hence
S ↑= V ↑ +U ↑= αβS0 + α(1− β)S0exp(−y0)exp(−y0x/x0)

(d) Solution: Because the whole system is energy balanced, so the net long wave radiation and short
wave radiation are cancelled.

Differentiate at both sides of
Ln + Sn = 0

we could get
dLn
dx

+
dSn
dx

= 0

Because Ln = L ↑ −L ↓, so

dLn
dx

=
dL ↑
dx
− dL ↓

dx
= (B − L ↑)− (−B + L ↓) = 2B − L ↑ −L ↓

Hence

2B − L ↑ −L ↓ +
dSn
dx

= 0
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(e) Solution:

Sn = S ↑ −S ↓ = αβS0 + α(1− β)S0exp(−y0)exp

(
−y0

x0
x

)
− βS0 − (1− β)S0exp(−y0)exp

(
y0

x0
x

)
= (α− 1)βS0 + (1− β)S0exp(−y0)

(
αexp

(
−y0

x0
x

)
− exp

(
y0

x0
x

))
≡ P +Q

(
αexp

(
−y0

x0
x

)
− exp

(
y0

x0
x

))
where P = (α− 1)βS0, Q = (1− β)S0exp(−y0).

dSn
dx

=
dS ↑
dx
− dS ↓

dx
= − y0

x0
(1− β)S0exp(−y0)

(
αexp

(
−y0

x0
x

)
+ exp

(
y0

x0
x

))
= − y0

x0
Q

(
αexp

(
−y0

x0
x

)
+ exp

(
y0

x0
x

))
Assume that

L ↓= a+ bx+ c exp

(
−y0

x0
x

)
+ d exp

(
y0

x0
x

)
Recall that

Ln + Sn = L ↑ −L ↓ +Sn = 0

therefore

L ↑= L ↓ −Sn = a+ bx+ c exp

(
−y0

x0
x

)
+ d exp

(
y0

x0
x

)
− P −Q

(
αexp

(
−y0

x0
x

)
− exp

(
y0

x0
x

))
= (a− P ) + bx+ (c−Qα)exp

(
−y0

x0
x

)
+ (d+Q)exp

(
y0

x0
x

)

B(x) =
1

2

(
L ↑ +L ↓ −dSn

dx

)
=

(
a− P

2

)
+ bx+

(
c+

Qα

2

(
y0

x0
− 1

))
exp

(
−y0

x0
x

)
+

(
d+

Q

2

(
y0

x0
+ 1

))
exp

(
y0

x0
x

)
Recall that

dL ↓
dx

= −B + L ↓

hence

b−c y0

x0
exp

(
−y0

x0
x

)
+d

y0

x0
exp

(
y0

x0
x

)
=
P

2
−Qα

2

(
y0

x0
− 1

)
exp

(
−y0

x0
x

)
−Q

2

(
y0

x0
+ 1

)
exp

(
y0

x0
x

)

=⇒



b =
P

2

−c y0

x0
= −Qα

2

(
y0

x0
− 1

)
d
y0

x0
= −Q

2

(
y0

x0
+ 1

)

=⇒



b =
P

2
=

(α− 1)βS0

2

c =
Qα

2

(
1− x0

y0

)
=
α(1− β)S0exp(−y0)

2

(
1− x0

y0

)
d = −Q

2

(
1 +

x0

y0

)
= − (1− β)S0exp(−y0)

2

(
1 +

x0

y0

)
At boundary x = x0, we have

L ↓= 0

hence
L(x0) ↓= a+ bx0 + c exp(−y0) + d exp(y0) = 0
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=⇒ a = −bx0 − c exp(−y0)− d exp(y0)

=
(1− α)βS0x0

2
− α(1− β)S0exp(−2y0)

2

(
1− x0

y0

)
+

(1− β)S0

2

(
1 +

x0

y0

)
So we could get the explicit functional forms for L ↑ (x), L ↓ (x) and B(x) after substitute a, b, c, d
into the expressions.

(f) Solution:

Figure 4: Up and down longwave, shortwave (U, V) and blackbody radiation flux change with z

Figure 5: Net longwave, shortwave and blackbody radiation flux change with z

(g) Solution: From the Figure 5, we can see that the radiation decreases gradually below the 10 km,
but it will increase gradually above 10 km, which means that the temperature will decrease below
the 10 km, but increase above it, so there is a inversion in the stratosphere (above 10 km).

Under climate change, the CO2 concentration will increase, so the optical thickness of atmosphere
to LW (due to CO2) x0 will increase, e.g. x0 = 4 (black line of Blackbody radiation in Figure 5).
As the two blackbody radiation lines show, the radiation in the troposphere will increase, but will
decrease in the stratosphere, indicating the troposphere warms while the stratosphere cools.
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