
ECMM723 – Modelling weather and climate

Problem sheet 1

January 30, 2018

Please attempt questions marked ⋆ and hand in your work via the BART system (see

Student Services, Harrison Building) by 12.00 noon, Monday 26th February 2018.

Questions marked (optional) are not compulsory and carry no mark.

1. ⋆ The Clausius-Clapeyron equation for the saturation vapour pressure of water may be written

d ln pw
dT

=
L

RT 2
,

where pw is saturation vapour pressure, T is temperature, L is the latent heat of vaporisation

and R is the specific gas constant. Calculate the height at which the water vapour pressure

is reduced to 1
e
× its surface value for an atmosphere with a surface temperature T0 = 298 K

and a constant lapse rate Γ = −
dT
dz

= 7 × 10−3 Km−1. This is known as the water vapour

pressure scale height. You may assume that the atmosphere is saturated and that L is a

constant. [8]

2. ⋆ Consider a planet on which atmospheric optical depth, χ, decreases with some absorber

scale height, H, so that

χ = χ0e
−

z

H ,

where χ0 is total optical depth measured at the surface.

(a) If we assume that the tropopause occurs at χ = 1, show that tropopause height, ztrop,

is given by

ztrop = H lnχ0.

[4]
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(b) Hence find a numerical estimate for the tropopause height for Earth, given that χ0 ∼ 5

and H ∼ 4 km. [2]

(c) Find a numerical estimate for the absorber scale height, H, on Venus, assuming that

the atmosphere is composed entirely of CO2, and is in hydrostatic equilbrium. You may

assume that the atmosphere is isothermal, with temperature T0 = 500 K. [8]

(d) Hence find a numerical estimate for the tropopause height for Venus, given that χ0 ∼ 100.

[2]

3. ⋆ A zero dimensional energy balance model of a planet’s global mean surface temperature

T as a function of time, t, that depends only on insolation, S, and the partial pressure of

atmospheric CO2, pCO2, can be written

c
dT

dt
=

S

4
(1−A)−

S0

4
(1−Aw)− λ(T − T0) + b ln

(

pCO2

p0

)

.

A is the planet’s albedo, which depends on T . Ac is the albedo in a cold ice-covered state.

Aw is the albedo in a warm ice-free state. 0 < Aw < Ac < 1. The switch between states

happens suddenly at T0 such that:

T < T0 : A = Ac,

T ≥ T0 : A = Aw.

c, λ, T0, b, S0 and p0 are positive constants.

On geological timescales pCO2 is controlled by the balance between volcanic emission, V , and

loss due to weathering1, such that

dpCO2

dt
= V −W0e

k(T−T0)

(

pCO2

p0

)β

.

W0, β and k are positive constants.

(a) In steady state, show that T − T0 may be written

T − T0 =
b ln

(

V
W0

)

+ β
(

S
4 (1−A)− S0

4 (1−Aw)
)

kb+ λβ
.

[5]

(b) Consider the upper limit of the cold state and the lower limit of the warm state. For a

given value of S, where S > S0, find the domain of ln
(

pCO2

p0

)

over which both the warm

and cold steady states can exist in terms of S and the constants. [7]

(c) With reference to the equations, explain qualitatively how and why volcanism must differ

between the warm and cold states for the same value of pCO2 in part (b). [2]

1CO2 dissolved in rainwater reacts with rocks, removing CO2 from the atmosphere.
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Another planet has constant volcanism V = V0, and constant weathering, W0, that only

operates in the warm state2 so that

T < T0 :
dpCO2

dt
= V0,

T ≥ T0 :
dpCO2

dt
= V0 −W0.

W0 > V0 > 0.

(d) For constant S = S1, where S1 > S0, sketch the time evolution of pCO2 and T , given

that the planet starts in the cold state and pCO2(t = 0) = p0. You may assume that cdT
dt

is small and S1

4 (1 − Ac) <
S0

4 (1 − Aw). Your sketches should be qualitative, but show

the functional form of the curves, indicate the position of any discontinuities and show

the position of turning points of T and pCO2 relative to their intial states. [10]

4. ⋆ The heat transport of the Stommel box model of the thermohaline circulation from Topic

4, Section 3 is due to the upper branch of q and is therefore ρCpqT
′, where Cp is the specific

heat capacity of sea water, ρ is density, q is flow rate and T ′ is the temperature difference

between the equatorial and polar boxes. (We don’t need to consider the heat transport due

to the lower branch of q because its heat flow is balanced by solar heating in the equatorial

box and cooling to the atmosphere in the polar box.)

Using the constants from Topic 4, Figure 9, and a computer where necessary:

(a) Plot or sketch the heat transport due to q1 in the range -1 Sv < E < +1 Sv. [3]

(b) Assume that q1 is the only heat transport and that E < 0.5 Sv always. If E suddenly

increases, what is the initial effect on q1 before T ′ changes? Without doing detailed

calculations, describe the subsequent response of T ′ and q1 to the perturbation. Is the

system stable or unstable? Why? (Here “Stable” means that a small perturbation to

the system is opposed by net negative feedbacks, that attempt to return the system to

the previous equilibrium. “Unstable” means that the perturbation grows, due to net

positive feedbacks, and the system is driven further away from its original equilibrium.)

[5]

(c) Write down an expression for the heat transport due to the freshwater term, E. (Hint:

E works by evaporating water from the equatorial box and condensing it in the polar

box.) [3]
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(d) Overplot the heat transport due to E on your diagram. [2]

(e) Does the heat transport due to E tend to make the whole system more or less

stable? [1]

2The idea is that if a planet is ice-bound, then weathering is probably greatly reduced.
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Optional / revision questions

5. (optional)

An atmosphere consists of dry air, has temperature as a function of horizontal coordinates x

and y but not vertical coordinate z, is in hydrostatic balance in the vertical and in geostrophic

balance in the horizontal (ie −fu = 1
ρ
∂p
∂y
). In this case, vertical variation of the x component

of velocity, u, is given by thermal wind balance

f
∂u

∂z
= −

g

T

∂T

∂y
.

Consider two air masses lying side-by-side with surface pressures p1,S and p2,S and vertically

uniform temperatures T1 and T2.

(a) Find expressions for the pressures p1 and p2 as a function of z in each

column.

(b) Where p1,S > p2,S and T1 < T2, sketch p1 and p2 against z on one set of

axes.

(c) Hence, find the height where u = 0, when p1,S = 1000 hPa, p2,S = 985 hPa, T1 = 275 K

and T2 = 285 K.

(d) A warm surface low pressure is observed to sit next to a cold high surface pressure in

the Northern Hemisphere. The systems are deep enough such that a layer of no motion

(u = 0) exists. Based on your answers to the earlier parts, describe and explain the

behaviour of pressure and winds that you would expect to see below and above the layer

of no motion.

5



6. (optional)

Consider a marginal sea with inflow and outflow occurring at a rate q. Inflow has no temper-

ature or salinity anomaly with respect to some arbitrary baseline i.e. inflow has T ′ = S′ = 0.

It is assumed that the sea is well-mixed, hence outflow has the mean sea temperature anomaly

T ′ and salinity anomaly S′. The equations of state for temperature and salinity are

dT

dt
= c(T0 − T ′)− qT ′,

dS

dt
= d(S0 − S′)− qS′.

(a) Using δ = d
c
, f ′ = q

c
, x = S′

S0
and y = T ′

T0
, show that in steady-state these equations can

be written “non-dimensionally” as

1− (1 + f ′)y = 0,

δ − (δ + f ′)x = 0.

Eliminate f ′ and find the relationship between x and y.

(b) The perturbation equation of state (ie for small changes with respect to some back-

ground) for sea water may be written ρ = ρ0(1 − αT ′ + βS′), where α, β and ρ0 are

positive constants. Using the non-dimensional quantities above, show that

ρ = ρ0(1 + αT0(−y +Rx)),

where R = βS0

αT0
.

(c) In the domain x : 0 → 1,

• Sketch y against x for δ = 1.

• And for some value of δ < 1.

• Overplot lines of constant ρ for some positive value of R. (ie lines of −y + Rx =

const.).

(This may be best done using a computer.)

What is the impact on outflow density as f ′ increases from 0 to ∞ for δ = 1 and δ < 1?

What does this mean physically?

7. (optional) A horizontal slab of atmosphere of longwave optical depth ∆χ and temperature

Tslab is present in an atmosphere that is otherwise at temperature Tatm.
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(a) By integrating either the upward or the downward differential equation for longwave

radiative transfer and using symmetry or otherwise, show that the net heat lost by the

slab due to longwave radiation is

qlost ≃ 2σ∆χ(T 4
slab − T 4

atm),

where the approximation e−x ≃ 1−x has been employed. You may assume that radiative

transfer is “grey” (ie absorption is constant across the spectrum and πB = σT 4) and

that radiation due to the atmosphere surrounding the slab is blackbody

(F = σT 4
atm).

(b) By making the approximation (T 4
slab − T 4

atm) ∼ 4T 3
atm∆T where ∆T = Tslab − Tatm, and

by assuming that Tatm is a constant, find an expression for the rate of change of the

temperature of the slab due to qlost given that the slab has heat capacity c.

(c) Find the time it takes for ∆T →
∆T
e

when Tatm = 270 K, c = 9 × 105 JK−1m−2 and

∆χ = 0.2. This is known as the radiative relaxation timescale.

(d) What does the radiative relaxation timescale tell you about the role of radiation in the

development of meteorological phenomena?
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8. (optional)

An atmosphere consists of dry air, has temperature as a function of horizontal coordinates x

and y but not vertical coordinate z, is in hydrostatic balance in the vertical and in geostrophic

balance in the horizontal (ie −fu = 1
ρ
∂p
∂y
). In this case, vertical variation of the x component

of velocity, u, is given by thermal wind balance

f
∂u

∂z
= −

g

T

∂T

∂y
.

Consider two air masses lying side-by-side with surface pressures p1,S and p2,S and vertically

uniform temperatures T1 and T2.

(a) Find expressions for the pressures p1 and p2 as a function of z in each

column.

(b) Where p1,S > p2,S and T1 < T2, sketch p1 and p2 against z on one set of

axes.

(c) Hence, find the height where u = 0, when p1,S = 1000 hPa, p2,S = 985 hPa, T1 = 275 K

and T2 = 285 K.

(d) A warm surface low pressure is observed to sit next to a cold high surface pressure in

the Northern Hemisphere. The systems are deep enough such that a layer of no motion

(u = 0) exists. Based on your answers to the earlier parts, describe and explain the

behaviour of pressure and winds that you would expect to see below and above the layer

of no motion.
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9. (optional)

Consider a marginal sea with inflow and outflow occurring at a rate q. Inflow has no temper-

ature or salinity anomaly with respect to some arbitrary baseline i.e. inflow has T ′ = S′ = 0.

It is assumed that the sea is well-mixed, hence outflow has the mean sea temperature anomaly

T ′ and salinity anomaly S′. The equations of state for temperature and salinity are

dT

dt
= c(T0 − T ′)− qT ′,

dS

dt
= d(S0 − S′)− qS′.

(a) Using δ = d
c
, f ′ = q

c
, x = S′

S0
and y = T ′

T0
, show that in steady-state these equations can

be written “non-dimensionally” as

1− (1 + f ′)y = 0,

δ − (δ + f ′)x = 0.

Eliminate f ′ and find the relationship between x and y.

(b) The perturbation equation of state (ie for small changes with respect to some back-

ground) for sea water may be written ρ = ρ0(1 − αT ′ + βS′), where α, β and ρ0 are

positive constants. Using the non-dimensional quantities above, show that

ρ = ρ0(1 + αT0(−y +Rx)),

where R = βS0

αT0
.

(c) In the domain x : 0 → 1,

• Sketch y against x for δ = 1.

• And for some value of δ < 1.

• Overplot lines of constant ρ for some positive value of R. (ie lines of −y + Rx =

const.).

(This may be best done using a computer.)

What is the impact on outflow density as f ′ increases from 0 to ∞ for δ = 1 and δ < 1?

What does this mean physically?
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