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1. The Clausius-Clapeyron equation for the saturation vapour pressure of water may be written

d ln pw
dT

=
L

RT 2

where pw is saturation vapour pressure, T is temperature, L is the latent heat of vaporisation and
R is the specific gas constant. Calculate the height at which the water vapour pressure is reduced
to 1/e× its surface value for an atmosphere with a surface temperature T0 = 298K and a constant
lapse rate Γ = −dTdz = 7 × 10−3Km−1. This is known as the water vapour pressure scale height.
You may assume that the atmosphere is saturated and that L is a constant.

Solution: Integrate at both sides of Clausius-Claperon equation, we could get

ln pw = − L

RT
+ C ′ (C ′ is a constant)

pw = C exp

(
− L

RT

)
(C is a constant).

When T = T0, pw = p0, so

p0 = C exp

(
− L

RT0

)
=⇒ C = p0 exp

(
L

RT0

)
,

hence

pw = p0 exp

[
L

R

(
1

T0
− 1

T

)]
.

If pw = 1
ep0, then

L

R

(
1

T0
− 1

T

)
= −1 (1)

Because the lapse rate Γ is constant, so

T = T0 − Γz (2)

Plug (2) into (1), hence
1

T0
− 1

T0 − Γz
= −R

L

Finally, we could get the expression of water vapour scale height z is

z =
RT 2

0

(L+RT0)Γ
(3)

Plug all the values (T0 = 298K, Γ = 7×10−3Km−1, R = 287.04J ·kg−1 ·K−1, L = 2.264×106J/K)
into (3), we get the water vapour scale height is

z ≈ 1.5km
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2. Consider a planet on which atmospheric optical depth, χ, decreases with some absorber scale height,
H, so that

χ = χ0e
− z

H (4)

where χ0 is total optical depth measured at the surface.

(a) If we assume that the tropopause occurs at χ = 1, show that tropopause height, ztrop, is given
by

ztrop = H lnχ0.

Solution: Plug χ = 1 into (4), then we can get

χ0e
− ztrop

H = 1,

χ0 = e
ztrop

H ,

=⇒ ztrop = H lnχ0.

(b) Hence find a numerical estimate for the tropopause height for Earth, given that χ0 ∼ 5 and
H ∼ 4 km.

Solution:
ztrop = H lnχ0 = 4× ln 5 ≈ 6.4 km

(c) Find a numerical estimate for the absorber scale height, H, on Venus, assuming that the
atmosphere is composed entirely of CO2, and is in hydrostatic equilbrium. You may assume
that the atmosphere is isothermal, with temperature T0 = 500K.

Solution:

According to the hydrostatic balance,

dp

dz
= −ρg

Because the atmopshere is isothermal, so

p = ρRT0 (according to ideal gas law)

Plug it into the hydrostatic balance, we have

RT0dρ

dz
= −ρg,

dρ

ρ
= − g

RT0
dz,

d ln ρ = − g

RT0
dz,

hence,

ρ = ρ0 exp

(
− g

RT0
z

)
,

where ρ0 is the CO2 density at surface. The optical depth χ is defined as

dχ = −5

3
ρadz,

where a is the absorber coefficient.∫ χ

0

dχ =

∫ z

∞
−5

3
ρadz =

5aρ0
3

∫ ∞
z

exp

(
− g

RT0
z

)
dz,

=⇒ χ =
5

3

aρ0RT0
g

exp

(
− g

RT0
z

)
For Venus, the gravity acceleration is g = 8.87ms−2. Because the scale height H is defined as
the height where χ = 1

eχ0. so the scale height of CO2 is

H =
RT0
g

=
287.04J · kg−1 ·K−1 × 500K

8.87ms−2
≈ 16180.4m ≈ 16.18km.
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(d) Hence find a numerical estimate for the tropopause height for Venus, given that χ0 ∼ 100.

Solution: According to (a), the height of tropopause is

ztrop = H lnχ0 = 16.18km× ln 100 ≈ 74.5km.

3. A zero dimensional energy balance model of a planets global mean surface temperature T as a
function of time, t, that depends only on insolation, S, and the partial pressure of atmospheric
CO2, pCO2

, can be written

c
dT

dt
=
S

4
(1−A)− S0

4
(1−Aw)− λ(T − T0) + b ln

(
pCO2

p0

)
(5)

A is the planets albedo, which depends on T . Ac is the albedo in a cold ice-covered state. Aw is the
albedo in a warm ice-free state. 0 < Aw < Ac < 1. The switch between states happens suddenly at
T0 such that:

T < T0 : A = Ac,

T ≥ T0 : A = Aw.

c, λ, T0, b, S0 and p0 are positive constant.

On geological timescales pCO2
is controlled by the balance between volcanic emission, V , and loss

due to weathering, such that

dpCO2

dt
= V −W0e

k(T−T0)

(
pCO2

p0

)β
(6)

W0, β and k are positive constants.

(a) In steady state, show that T − T0 may be written

T − T0 =
b ln

(
V
W0

)
+ β

(
S
4 (1−A)− S0

4 (1−Aw)
)

kb+ λβ
(7)

Solution: In steady state,
dT

dt
= 0,

dpCO2

dt
= 0

So the (5) and (6) become that

S

4
(1−A)− S0

4
(1−Aw)− λ(T − T0) + b ln

(
pCO2

p0

)
= 0 (8)

V −W0e
k(T−T0)

(
pCO2

p0

)β
= 0 (9)

From (9) we could get

ln

(
pCO2

p0

)
=

1

β

[
ln

(
V

W0

)
− k(T − T0)

]
Put it back into (8), we could get

S

4
(1−A)− S0

4
(1−Aw)− λ(T − T0) +

b

β

[
ln

(
V

W0

)
− k(T − T0)

]
= 0

=⇒ T − T0 =
b ln

(
V
W0

)
+ β

(
S
4 (1−A)− S0

4 (1−Aw)
)

kb+ λβ

(b) Consider the upper limit of the cold state and the lower limit of the warm state. For a given

value of S, where S > S0, find the domain of ln
(
pCO2

p0

)
over which both the warm and cold

steady states can exist in terms of S and the constants.
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Solution: When T is in steady state, we could get from (8) that

T = T0 +
1

λ

[
S1

4
(1−A)− S0

4
(1−Aw) + b ln

(
pCO2

p0

)]
For a cold steady state, put A = Ac into (8), and the temperature for cold state is noted as
Tc(Tc < T0), hence

T = T0 +
1

λ

[
S

4
(1−Ac)−

S0

4
(1−Aw) + b ln

(
pCO2

p0

)]

=⇒ 1

λ

[
S

4
(1−Ac)−

S0

4
(1−Aw) + b ln

(
pCO2

p0

)]
< 0

=⇒ ln

(
pCO2

p0

)
< −1

b

[
S

4
(1−Ac)−

S0

4
(1−Aw)

]
For a warm steady state, put A = Aw into (8), and the temperature for warm state is noted
as Tw(Tw ≥ T0), hence

T = T0 +
1

λ

[
S

4
(1−Aw)− S0

4
(1−Aw) + b ln

(
pCO2

p0

)]

=⇒ 1

λ

[
S

4
(1−Aw)− S0

4
(1−Aw) + b ln

(
pCO2

p0

)]
≥ 0

=⇒ ln

(
pCO2

p0

)
≥ −1

b

[
S

4
(1−Aw)− S0

4
(1−Aw)

]
If both cold and warm state can exist, then

−1

b

[
S

4
(1−Aw)− S0

4
(1−Aw)

]
≤ ln

(
pCO2

p0

)
< −1

b

[
S

4
(1−Ac)−

S0

4
(1−Aw)

]
(c) With reference to the equations, explain qualitatively how and why volcanism must differ

between the warm and cold states for the same value of pCO2 in part (b).

Solution: In cold steady state, the function of volcano is to increase the pCO2
, which will

increase the temperature. But in the warm state, the function of geological process is to de-
crease the pCO2 , which will prevent the temperature from becomming too hot.

Another planet has constant volcanism V = V0, and constant weathering, W0, that only operates
in the warm state so that

T < T0 :
dpCO2

dt
= V0,

T ≥ T0 :
dpCO2

dt
= V0 −W0.

where W0 > V0 > 0.

(d) For constant S = S1, where S1 > S0, sketch the time evolution of pCO2
and T , given that the

planet starts in the cold state and pCO2
(t = 0) = p0. You may assume that cdTdt is small and

S
4 (1−Ac) < S0

4 (1−Aw). Your sketches should be qualitative, but show the functional form of
the curves, indicate the position of any discontinuities and show the position of turning points
of T and pCO2

relative to their intial states.

Solution: Assume that cdTdt is small, so (5) becomes

S1

4
(1−A)− S0

4
(1−Aw)− λ(T − T0) + b ln

(
pCO2

p0

)
= 0

T = T0 +
1

λ

[
S1

4
(1−A)− S0

4
(1−Aw) + b ln

(
pCO2

p0

)]
(10)
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When t = 0, T < T0, A = Ac, and pCO2 satisfying

dpCO2

dt
= V0, pCO2(t = 0) = p0,

hence
pCO2

= p0 + V0t, for the t satisfying T (t) < T0. (11)

Plug (11) into (10), hence

T (t) = T0 +
1

λ

[
S1

4
(1−Ac)−

S0

4
(1−Aw) + b ln

(
p0 + V0t

p0

)]
(12)

Suppose that T (t1) = T0 when t = t1, and we could get the time t1 from (12), that is

1

λ

[
S1

4
(1−Ac)−

S0

4
(1−Aw) + b ln

(
p0 + V0t1

p0

)]
= 0

t1 =
p0
V0

[
exp

(
1

b

(
S0

4
(1−Aw)− S1

4
(1−Ac)

))
− 1

]
And the partial pressure of CO2 becomes

pCO2
= p0

[
exp

(
1

b

(
S0

4
(1−Aw)− S1

4
(1−Ac)

))]
,

which is the initial condition for the pCO2
when T ≥ T0.

In addition, when t = t1, T = T0, which triggered the change of A from Ac to Aw, and will
cause a discontinuity in the temperature. Because 1 − Aw > 1 − Ac, so the temperature will
larger than T0 in a short time after t1.

When T ≥ T0, the temperature becomes that

T (t) = T0 +
1

λ

[
S1

4
(1−Aw)− S0

4
(1−Aw) + b ln

(
pCO2

p0

)]
(13)

where
pCO2

= (V0 −W0)(t− t1) + p0 + V0t1, (V0 −W0 < 0, t ≥ t1).

The temperature at very short time after t1 is

T = T0 +
S1

4λ
(Ac −Aw) > T0

Suppose that T (t2) = T0 again when t = t2, and we could get the time t1 from (13), that is

t2 = t1 +
1

V0 −W0

[
p0 exp

(
1

b

(
S0

4
(1−Aw)− S1

4
(1−Aw)

))
− p0 − V0t1

]

t2 = t1 +
p0 exp( 1

b )

V0 −W0
exp

(
S0

4
(1−Aw)

)[
exp

(
−S1

4
(1−Aw)

)
− exp

(
−S1

4
(1−Ac)

)]
And the partial pressure of CO2 becomes

pCO2
= p0

[
exp

(
1

b

(
S0

4
(1−Aw)− S1

4
(1−Aw)

))]
< p0,

In addition, after a short time of t = t2, T < T0, which triggered the change of A from Aw to
Ac, and will cause a discontinuity in the temperature, and the temperature will less than T0
again. The new temperature is

T = T0 −
S1

4λ
(Ac −Aw),

and the process will repeat.
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Figure 1: Illustration of the change of pCO2
and T .

4. The heat transport of the Stommel box model of the thermohaline circulation from Topic 4, Section
3 is due to the upper branch of q and is therefore ρCpqT

′, where Cp is the specific heat capacity of
sea water, ρ is density, q is flow rate and T ′ is the temperature difference between the equatorial
and polar boxes. (We dont need to consider the heat transport due to the lower branch of q because
its heat flow is balanced by solar heating in the equatorial box and cooling to the atmosphere in
the polar box.)

Using the constants from Topic 4, Figure 9, and a computer where necessary:

(a) Plot or sketch the heat transport due to q1 in the range −1 Sv < E < +1 Sv.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
E [Sv]
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Figure 2: Energy transport in Stommel model.

(b) Assume that q1 is the only heat transport and that E < 0.5 Sv always. If E suddenly increases,
what is the initial effect on q1 before T ′ changes? Without doing detailed calculations, describe
the subsequent response of T ′ and q1 to the perturbation. Is the system stable or unstable?
Why? (Here Stable means that a small perturbation to the system is opposed by net negative
feedbacks, that attempt to return the system to the previous equilibrium.“Unstable” means
that the perturbation grows, due to net positive feedbacks, and the system is driven further
away from its original equilibrium.)

Solution: When E increases suddenly (remain E < 0.5 Sv even after increase), the ini-
tial effect on q1 is that it will decrease before T ′ changes. Then the subsequent responses
of q1 is to decrease which leads to the increase of T ′. Because the q is proportional to the
temperature difference, the increase of T ′ will lead to the increase of q1, so the system is stable.

(c) Write down an expression for the heat transport due to the freshwater term, E. (Hint: E
works by evaporating water from the equatorial box and condensing it in the polar box.)

Solution: The evaporation will absorb latent heat, which will release when condensed, so the
heat transport by E is

H = ρLvE,
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where Lv is the latent heat of water vapour evaporation.

(d) Overplot the heat transport due to E on your diagram.

Refer to the dash line in Figure 2.

(e) Does the heat transport due to E tend to make the whole system more or less stable?

The heat transport due to E tends to make the system more stable.
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