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SECTION A

1. (a) The linear barotropic vorticity equation may be written as

@

@t
r

2 C ˇ
@ 

@x
D 0;

where  is the streamfunction and ˇ is the rate of change of Coriolis
parameter with latitude. Obtain the dispersion relation for waves in this
system. What kind of waves are these? Obtain expressions for the phase
speed, cx

p and group velocity, cx
g , in the zonal, or x, direction. Show that they

are related by [13]

cx
g D c

x
p C

2ˇk2

.k2 C l2/2
:

(b) (i) The Boussinesq equations are approximations to the full Navier–Stokes
equations that are valid in some but not all circumstances. State the
circumstances under which they are valid, and whether they are more
likely to hold quantitatively in the ocean or atmosphere, giving a brief
explanation. [5]

(ii) On the f -plane and in the Boussinesq approximation the inviscid
momentum equation and the buoyancy equation may be written

Dv
Dt
C f0

yk � v D �r� C byk;

Db
Dt
D 0;

where v is the three dimensional velocity and b is the buoyancy. What
do these equations become if the fluid is in geostrophic and hydrostatic
balance? In particular, write down the corresponding horizontal and
vertical momentum equations. Hence show that a horizontal gradient of
buoyancy is associated with a vertical shear of the horizontal wind. [7]

(c) You are given the rotating shallow water equations, linearized about a state
of rest and constant mean geopotential ˚0:
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Here ˚ is a perturbation to ˚0, and f may be taken as constant. By seeking
solutions of the form

u D Ref Ou expŒi.kx C ly � !t/�g;

etc., where Ou is a constant, derive the dispersion relation for this system

!f!2
� f 2

� ˚0.k
2
C l2/g D 0:

What kinds of waves or motion do the three roots for ! correspond to? [13]

(d) (i) Consider flow on a beta plane obeying the equation

Dq
Dt
D 0

where q D � C f (where � is the relative vorticity) and f D f0 C ˇy

and f0 and ˇ are positive constants. If a parcel is displaced poleward
(i.e., to larger values of y) will its relative vorticity increase or decrease,
and explain your reasoning. [4]

(ii) Show that this change in vorticity of a parcel will cause neighbouring
parcels to be displaced. Will parcels to the left or right of the original
parcel be displaced in same direction as the original one? Draw a diagram
to illustrate your argument. As a consequence of this, do Rossby waves
propagate to the east or to the west? [8]

[50]

End of Part A
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SECTION B

2. The shallow water equations may be written
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where �0 and f0 are constants, and we take g D 1 for simplicity. We will define
the potential vorticity for this system to be

q D H
� C f0

h
;

where � D .@v=@x � @u=@y/ and H is the mean height of the fluid. We will be
concerned with small perturbations around a state of rest, so that u0 and v0 are
small and h D H C h0 where jh0j � H .

(a) Show that the linearized potential vorticity, q0, for this system is given by

q0 D � 0 � f0

h0

H

where � 0 D .@v0=@x � @u0=@y/. [7]

(b) If the flow is in geostrophic balance show that the relative vorticity is given
by

� 0 D r2 ;

where  D h0=f0. Hence show that the potential vorticity is then given by

q0 D r2 �
1

L2
d

 ;

and write down an expression for Ld . [8]

(c) Suppose that the initial flow has u0 D v0 D 0 and that there is a step function
of size 2h00 in the height field h00. The initial potential vorticity is thus given
by

q0.x; y/ D

(
�f0h

0
0=H x < 0

f0h
0
0=H x > 0:

If the final state is in geostrophic balance show that the streamfunction
satisfies

 D

(
�A.1 � e�x=B/ x > 0

CA.1 � ex=B/ x < 0;

and obtain expressions for the constants A and B . [10]
[25]
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3. Consider a layer of fluid of constant density in the upper ocean that satisfies the
Ekman-layer equations:

(E1) �f v D �
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;

where �x; �y are components of the stress, �, in the x- and y-directions and
f D f0 C ˇy. Assume that the pressure, �, is not a function of z, that the Ekman
layer has some finite depth, HE , below which the stress is zero, and that the
vertical velocity is zero at the top of the ocean, z D 0, and at the bottom.

(a) Define the geostrophic velocity in terms of the components of the pressure.
Show that the divergence of the geostrophic velocity satisfies

f

�
@ug
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@y

�
D �ˇvg :

Show also that equations (E1) may be written as

(E2) f .vg � v/ D
@�x

@z
; f .u � ug/ D

@�y

@z
:

[6]

(b) Suppose that the stress is imposed at the top of the layer (z D 0) such that

�x D �x0; �y D �y0 at z D 0:

At the bottom of the Ekman layer suppose that the stress is zero.
By integrating equations (E2) over the depth of the Ekman layer show that
the transport induced by the stress (i.e., the ageostrophic mass flux) is at right
angles to the direction of the surface stress. [6]

(c) By integrating the mass continuity equation over the depth of the Ekman
layer show that the vertical velocity at the base of the Ekman layer, wE , is
given by
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f
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[7]

(d) By cross-differentiating equations (E1) and vertically integrating over the
total depth of the ocean, or otherwise, derive the Sverdrup relation,Z

ˇv dz D
@�y0

@x
�
@�x0

@y

where v is the meridional component of the total velocity (i.e. geostrophic
and ageostrophic). [6]

[25]

Page 5 of 7 ECMM719P/continued . . .



4. In the Stommel model of the ocean circulation, the streamfunction satisfies

(S1) rr2 C ˇ
@ 

@x
D G.y/;

where G.y/ is a given function representing the wind forcing and ˇ and r are
positive constants. We will assume that the equation is to be solved in the Northern
Hemisphere in a square domain of unit size with  D 0 on the boundaries, and
that G.0/ D G.1/ D 0, but G is nonzero in the interior. We will seek solutions to
this equation of the form  D  I C � where  I satisfies

(S0) ˇ
@ I

@x
D G.y/:

(a) Without making any approximation, obtain an equation satisfied by �.
Then, either by making a physical argument, or by nondimensionalizing
the equations and looking for a leading order (asymptotic) balance, show that,
if r is sufficiently small, then at either the western boundary (where x D 0)
or the eastern boundary (where x D 1), � approximately satisfies

(S2) r
@2�

@x2
C ˇ

@�

@x
D 0:

[6]
(b) Show that a solution to equation (S2) can be found that is of the form

(S3) � D A.y/C B.y/ exp.��x/;

where A and B are arbitrary functions, and obtain an expression for �. [6]
(c) By looking at the behaviour of equation (S3) far from the wall, deduce

whether the boundary current is on the western wall or the eastern wall. How
does your answer differ in the Southern Hemisphere? [5]

(d) Using dimensional analysis, or otherwise, obtain an estimate for the thickness
of the boundary layer in terms of r and ˇ. [4]

(e) Instead of equation (S0) suppose that the streamfunction satisfies:

(S4) � �r4 C ˇ
@ 

@x
D G.y/:

Using dimensional analysis, or otherwise, obtain an estimate for the thickness
of the boundary layer in terms of � and ˇ. [4]

[25]
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5. You are given the linear quasi-geostrophic potential vorticity equation in the form
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2 C ˇv D 0;

where  is the streamfunction and r2 D @2
x C @

2
y .

(a) By considering perturbations of the form

 D Re f	 exp Œi.kx C ly � !t/�g ;

or otherwise, show that the dispersion relation for this system is

! D Uk �
ˇk

k2 C l2
;

and hence obtain an expression for the y–component of the group velocity. [7]

(b) The meridional component of the eddy momentum flux (per unit mass) is
given by:

uv D
1

L

Z
L

uv dx D
1
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�
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where L is one wavelength. Using this, and taking U D 0 if you wish, show
that

uv D �
1

2
kl j	 j2:

Hence infer that the meridional component of the group velocity has the
opposite sign to the momentum flux. Explain, using the x-component of
the momentum equation as needed, how this can produce eastward jets in
midlatitude atmospheres. [10]

(c) The surface winds, us, in the atmosphere are produced by this momentum
flux and they approximately obey

rus D �
@

@y
.uv/;

where r is a friction coefficient with value r D 10�5 s�1. Using reasonable
values for the terms on the right hand side of this equation for Earth’s
atmosphere, estimate a value for the surface winds. [8]

[25]
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