
ECMM719, Fluid Dynamics of the Atmosphere and Ocean

Problem Set 2

Qun Liu (Student No: 670016014)
ql260@exeter.ac.uk

College of Enginerring, Mathematics and Physical Sciences

March, 2018

1. Vertically propagating Rossby waves

(a)
∂q

∂t
+ U

∂q

∂x
+ βv = 0, (1)

where

q =
∂2ψ

∂x2
+
∂2ψ

∂y2
+

∂

∂z

(
f20
N2

∂ψ

∂z

)
.

Solution: Assuming that
ψ = Re ψ̂ ei(kx+ly+mz−ωt),

and putting it into q gives

q = −
(
k2 + l2 +

f20
N2

m2

)
Re ψ̂ ei(kx+ly+mz−ωt) . (2)

In addition,

v =
∂ψ

∂x
= Re ikψ̂ ei(kx+ly+mz−ωt) . (3)

Plug (2) and (3) into (1), we could get

iω

(
k2 + l2 +

f20
N2

m2

)
− ikU

(
k2 + l2 +

f20
N2

m2

)
+ ikβ = 0,

hence

ω = kU − kβ

k2 + l2 +
f2
0

N2m2
. (4)

These waves are three-dimensional Rossby waves.

(b) Calculate the vertical component of the group velocity for such waves.

Solution: The vertical component of the group velocity is

czg =
∂ω

∂m
=

2mkβ
f2
0

N2(
k2 + l2 +

f2
0

N2m2
)2

(c)

b = f0
∂ψ

∂z
= Re if0mψ̂ ei(kx+ly+mz−ωt) = −f0mψ̂ sin(kx+ ly +mz − ωt), (5)

and v could be rewritten as

v = −kψ̂ sin(kx+ ly +mz − ωt). (6)

Noting that

Lλ =
2π

k
,

1
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and combining (6) and (5) gives

vb =
1

Lλ

∫
Lλ

vbdx =
1

Lλ

∫
Lλ

kmf0ψ̂
2 sin2(kx+ ly +mz − ωt) dx

=
kmf0ψ̂

2

Lλ

∫
Lλ

1− cos[2(kx+ ly +mz − ωt)]
2

dx

=
kmf0ψ̂

2

Lλ

Lλ
2

=
kmf0ψ̂

2

2
= Akm|ψ̂|2,

where A = f0
2 .

If upward wave propagation exists, then m 6= 0, indicating that the poleward eddy bouyancy
flux vb 6= 0.

(d) Noting that ω = ck, and putting it into 4 we obtain

m2 =
N2

f20

(
β

U − c
− k2 − l2

)
. (7)

For stationary waves, c = 0, then (7) becomes

m2 =
N2

f20

(
β

U
− k2 − l2

)
. (8)

For waves to propagate upwards we require that m2 > 0, and from (8) we obtain

β

k2 + l2
> U > 0.

2. Ekman layers

The Ekman-layer equations are

−fv = −∂φ
∂x

+
∂τx
∂z

, (9)

fu = −∂φ
∂y

+
∂τy
∂z

(10)

(a) We could rewrite (9) and (10) in the vector form, that is

f × u = −∇φ+
∂τ

∂z
, (11)

where u = (u, v), τ = (τx, τy). In the Eckman layer itself we have

f × u
E

=
∂τ

∂z
. (12)

Integrate from the bottom to top of the Eckman layer, we could obtain

f ×M
E

=

∫ 0

−HE

∂τ

∂z
dz = τ

T
− τ

B
, (13)

where M
E

=
∫ 0

−HE uEdz is the agostrophic transport, and τ
T

and τ
B

= 0 are the wind stress

at the top and bottom of Eckman layer. From (13) we could get

M
E

= τ
T
− τ

B
,

M
E

=
1

f
k × τ

T
,

which is at the right angle of surface stress.
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(b) The mass continuity is
∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0. (14)

If we rewrite the velocity into sum of interior geostrophic part and a boundary layer part:

u = ug + ua, v = vg + va, (15)

and they satisfy that

−fvg = −∂φ
∂x
, (16)

fug = −∂φ
∂y
, (17)

where f = f0 + βy. We could obtain that

f (vg − v) =
∂τx
∂z

, f (u− ug) =
∂τy
∂z

. (18)

Also, −∂(16)∂y + ∂(17)
∂x gives that

f

(
∂ug
∂x

+
∂vg
∂y

)
= −βvg. (19)

With (15), the mass continuity equation (14) becomes

∂ug
∂x

+
∂ua
∂y

+
∂vg
∂x

+
∂va
∂y

+
∂w

∂z
= 0.

Integrating it from the ocean bottom z = −Ho to the surface z = 0 gives∫ 0

−Ho

(
∂ua
∂x

+
∂va
∂y

+
∂ug
∂x

+
∂vg
∂y

)
= −(w

T
− w

B
) = 0. (20)

From (18) we get the divergence of agostrophic velocity satisfying

va = − 1

f

∂τx
∂z

, ua =
1

f

∂τy
∂z

, (21)

=⇒
∫ 0

−Ho

(
∂ua
∂x

+
∂va
∂y

)
dz =

∫ 0

−Ho

∂

∂z

[
∂

∂x

(
τy
f

)
− ∂

∂y

(
τx
f

)]
dz =

∂

∂x

(
τy0
f

)
− ∂

∂y

(
τx0
f

)
,

where τx0 and τy0 are the components of stress at the surface.

Plugging ua, va and (19) into (20), we obtains∫ 0

−Ho
βvgdz = f

[
∂

∂x

(
τy0
f

)
− ∂

∂y

(
τx0
f

)]
. (22)

(c) −∂(9)∂y + ∂(10)
∂x =⇒

f

(
∂u

∂x
+
∂v

∂y

)
= −βv +

∂

∂z

(
∂τy
∂x
− ∂τx

∂y

)
. (23)

Combing (23) and (14) and integrating from bottom to the surface of the ocean, we obtains∫ 0

−H0

βvdz =

∫ 0

−Ho

∂

∂z

(
∂τy
∂x
− ∂τx

∂y

)
dz =

∂τy0
∂x
− ∂τx0

∂y
(24)

(d) Because f = f0 + βy is not a function of x, so (22) could be rewritten as∫ 0

−Ho
βvgdz =

∂τy0
∂x
− f ∂

∂y

(
τx0
f

)
=
∂τy0
∂x
− ∂τx0

∂y
− β

f
τx0.

From (21) we could get ∫ 0

−Ho
βvadz = −

∫ 0

−Ho

β

f

∂τx
∂z

dz =
β

f
τx0.
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Hence, ∫ 0

−Ho
βvgdz =

∫ 0

−Ho
βvdz −

∫ 0

−Ho
βvadz,

which means that the two equations (22) and (24) are nevertheless consistent.

3. Rossby waves and jets

(a) Show that if there is a source of Rossby waves at any given latitude in the Northern Hemisphere,
we expect that eastward flow will be generated there. Your answer will involve relating flux of
momentum in Rossby waves and relating it to group velocity. How does your answer differ in
the Southern Hemisphere?

Solution: The stream function for quasi-linear Rossby waves is

ψ = ReCei(kx+ly−ωt) = ReCei(kx+ly−kct),

where C = a+ ib is a complex constant, a, b ∈ R. The dispersion relation is

ω = ck = Uk − βk

k2 + l2
,

supposing that there is no medional shear in zonal flow. The meridional group velocity is

cyg =
∂ω

∂l
=

2βkl

(k2 + l2)
2 .

The velocity variations associated with the Rossby waves are

u = −∂ψ
∂y

= −ReCilei(kx+ly−ωt) = al sin(kx+ ly − ωt) + bl cos(kx+ ly − ωt),

v =
∂ψ

∂x
= ReCikei(kx+ly−ωt) = −ak sin(kx+ ly − ωt)− bk cos(kx+ ly − ωt).

uv =
1

L

∫ L

0

uvdx

=
1

L

∫ L

0

−kl [a sin(kx+ ly − ωt) + b cos(kx+ ly − ωt)] [a sin(kx+ ly − ωt) + b cos(kx+ ly − ωt)] dx

=
1

L

∫ L

0

−kl
(
a2 sin2(kx+ ly − ωt) + b2 cos2(kx+ ly − ωt)

)
dx

= −1

2
(a2 + b2)kl = −1

2
|C|2kl

Because the energy travels at the group velocity, so the cyg will be away from the source region.
In the northern hemisphere, cyg > 0 (kl > 0) in the north of the latitude where the disturbance
occurred, and cyg < 0 (kl < 0) in the south of the latitude. Therefore, uv < 0 in the north of
the latitude, and uv > 0 in the south of the stirring source, indicating

∂uv

∂y
< 0. (25)

The momentum equation is

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− fv = −∂φ

∂t

∂u

∂t
+
∂u2

∂x
+
∂uv

∂y
− fv = −∂φ

∂t

Taking zonally average of the above equation,

1

L

∫ L

0

(
∂u

∂t
+
∂u2

∂x
+
∂uv

∂y
− fv

)
dx =

1

L

∫ L

0

−∂φ
∂t
dx
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∂u

∂t
+
∂uv

∂y
= 0. (26)

Put (25) into (26), we could get
∂u

∂t
= −∂uv

∂y
> 0,

hence there will be eastward flow at the given latitude.

In the southern hemisphere, the eastward flow will also be generated.

(b) Consider two interacting Rossby waves in a single-layer barotropic fluid. Each Rossby wave
generates a wave with a velocity amplitude of 10ms−1. Being explicit about the assumptions
you make, what is the acceleration of the mean flow? How long will it take to generate a mean
flow of 20ms−1?

4. Geostrophic adjustment with a velocity jump.

(a) Linearized potential vorticity in shallow water system.

Solution: The potential vorticity conservation is

∂Q′

∂t
+ u · ∇Q′ = 0, (27)

where Q′ = ζ′+f0
h , h is the depth of the fluid. In the linearised case with constant Coriolis

parameter, the Q′ could be rewritten as

Q′ =
ζ ′ + f0
H + h′

,

where H is the mean thickness, and h′ is the deviation free surface height. We can write

Q′ =
ζ ′ + f0

H(1 + h′

H )
≈ 1

H
(ζ ′ + f0)

(
1− h′

H

)
,

because f0 � |ζ ′| and H � |h′|, so h′/H close to 0, and 1

1+h′
H

≈ 1 − h′

H . In addition, if we

neglect ζ ′h′/H, the Q′ could be rewritten as

Q′ ≈ 1

H
(ζ ′ + f0)

(
1− h′

H

)
=

1

H

(
ζ ′ + f0 − f0

h′

H

)
=
f0
H

+
q′

H
, (28)

where

q′ = ζ ′ − f0
h′

H
. (29)

Put the (28) and q′ into the (27), we could get

∂q′

∂t
+ u · ∇q′ = 0, (30)

noting that f0 is a constant, so the ∂f0/∂t = 0 and ∇f0 = 0. In addition, the advective term
u · ∇q′ us second order term in perturbed quantities and so is neglected. Hence (31) becomes

∂q′

∂t
= 0, (31)

which is the linearized potential vorticity conservation with q′ = ζ ′ − f0 h
′

H .

(b) Solution: In the geostrophic balance, we have

f0u = −g ∂h
′

∂y
, f0v = g

∂h′

∂x
,

and if we define

ψ = g
h′

f0
, (32)
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so the u and v become

u = −∂ψ
∂y

, v =
∂ψ

∂x
.

Therefore, ζ ′ could be written as

ζ ′ =
∂v

∂x
− ∂u

∂y
=
∂2ψ

∂x2
+
∂2ψ

∂y2
= ∇2ψ. (33)

Put (32) and (33) into (29), we could get

q′ = ζ ′ − f0
h′

H
= ∇2ψ − f20

gH
ψ = ∇2ψ − 1

L2
d

ψ, (34)

where Ld =
√
gH/f0.

(c) Solution: In the initial state, η = 0, u = 0, and

v(x) = v0 sgn(x) =

{
v0, x > 0,

− v0, x < 0,
(35)

so the potential vorticity is

q = ζ − f0
η

H
= ζ =

∂v

∂x
− ∂u

∂y
= v0

∂ sgn(x)

∂x
= 2v0δ(x), (36)

where δ(x) is Dirac delta function.

Put (36) into (34)(where q′, ζ ′, h′ are q, ζ, η respectively.), hence (34) becomes

∇2ψ − 1

L2
d

ψ = 2v0δ(x). (37)

If we only consider x direction, we have

∂2ψ

∂x2
− 1

L2
d

ψ = 2v0δ(x). (38)

Suppose that
ψ(x) = ψ0 ekx +C,

where ψ0 and C are constants, and put it into (38), we could get(
k2 − 1

L2
d

)
ψ0 ekx− C

L2
d

= 2v0δ(x)

If x 6= 0, δ(x) = 0, hence

k2 =
1

L2
d

, and C = 0.

In order to get a stable solution, k = − 1
Ld

when x > 0, and k = 1
Ld

when x < 0, that is

ψ(x) = ψ0 e
− |x|
Ld .

We can calculate the derivation of ψ, that is

∂ψ

∂x
= −|x|

x

ψ0

Ld
e
− |x|
Ld ,

∂2ψ

∂x2
= 2

ψ0

Ld
δ(x) +

ψ0

L2
d

e
− |x|
Ld ,

and put them into (38), we could get

2
ψ0

Ld
= 2v0,

ψ0 = v0Ld,

hence

ψ(x) = v0Ld e
− |x|
Ld . (39)
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(i) Find the equilibrium height and velocity fields at t =∞ in the linear approximation.
Solution: According to the definition of ψ, i.e. (32), the height η here or (h′ in (32)) is

η =
f0
g
ψ =

f0v0Ld
g

e
− |x|
Ld =


f0v0Ld
g

e
− x
Ld , x > 0,

f0v0Ld
g

e
x
Ld , x < 0.

.

For the velocity,

u = −∂ψ
∂y

= 0,

v =
∂ψ

∂x
= −v0

|x|
x

e
− |x|
Ld =

{
−v0 e

− x
Ld , x > 0,

v0 e
x
Ld , x < 0.

(ii) What are the initial and final kinetic and potential energies?
Solution: The height is 0 in the initial state, so the initial potential energy is 0, that is

PEI = 0.

In the final state, the potential energy is

PEF =
1

2
g

∫ ∞
−∞

η2dx =
1

2

(
f0v0Ld
g

)2(∫ 0

−∞
e

2x
Ld dx+

∫ ∞
0

e
− 2x
Ld dx

)
=
Ld
2

(
f0v0Ld
g

)2

.

The kinetic energy in the initial state is

KEI =
1

2
H

∫ ∞
−∞

v20dx −→∞,

but for the final state, the kinetic energy is

PEF =
1

2
Hv20

(∫ 0

−∞
e

2x
Ld dx+

∫ ∞
0

e
− 2x
Ld dx

)
=

1

2
Hv20Ld.

5. Geostrophic Theory

(a) The potential vorticity equation for shallow water is

DQ

D t
=

D

D t

ζ + f

h
= 0 (40)

where f = f0 + βy. Q could be rewritten as

Q =
ζ + f

h
=

ζ + f

H + η
=

1

H

ζ + f

1 + η/H
≈ 1

H
(ζ + f)

(
1− η

H

)
≈ 1

H

(
f0 + βy + ζ − f0

η

H

)
,

where |η| � H and |βy| � f0, and terms −βy ηH and −ζ ηH are neglected. Put it back into the
(40), we obtain

D

D t

1

H

(
f0 + βy + ζ − f0

η

H

)
=

D

D t

(
βy + ζ − f0

η

H

)
= 0,

and define
q = βy + ζ − f0

η

H
, (41)

hence
D q

D t
= 0. (42)

In the geostrophic balance, we have

f0u = −g ∂η
∂y
, f0v = g

∂η

∂x
,

and if we define
ψ = g

η

f0
, (43)
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so the u and v become

u = −∂ψ
∂y

, v =
∂ψ

∂x
.

Therefore, ζ could be written as

ζ =
∂v

∂x
− ∂u

∂y
=
∂2ψ

∂x2
+
∂2ψ

∂y2
= ∇2ψ. (44)

Put (44) and (43) into (41), we could get

q = ∇2ψ − f20
gH

ψ + βy = ∇2ψ − k2dψ + βy, (45)

where kd = f0√
gH

.

Plug (45) into (42), we can obtain

D

D t
(∇2ψ − k2dψ + βy) =

D

D t
(∇2ψ − k2dψ) +

Dβy

D t
=

D

D t
(∇2ψ − k2dψ) + βv = 0.

(b) Solution:

The momentum equation in shallow water system is

∂u

∂t
+ u · ∇u+ f × u = −g∇η, (46)

where η is the surface height of shallow water. The mass continuity equation is

Dh

Dt
+ h∇ · u = 0,

here we suppose the bottom is flat (that is ηb = 0), then the total fluid thickness is η = h, and
we have

Dη

Dt
+ η∇ · u = 0.

If we rewrite η = H + ∆η (H is the mean thickness, ), and multiply 1/H at both sides of the
mass continuity equation, it will become

1

H

Dη

Dt
+

(
1 +

∆η

H

)
∇ · u = 0. (47)

We assume the scales of velocity, length, and time are

(x, y) ∼ L, (u, v) ∼ U, t ∼ L

U
.

In geostrophic balance,

−fv = −g ∂η
∂x
,

so ∆η has the scale

∆η ∼ fUL

g
= Ro H

L2

L2
d

,

where Ro = U
fL , Ld =

√
gH
f . Hence

(x, y) = L(x̂, ŷ), (u, v) = U(û, v̂), t =
L

U
t̂, (48a)

∆η = Ro H
L2

L2
d

η̂, η =

(
1 +Ro

L2

L2
d

η̂

)
H. (48b)

Putting the scales (48) into (46) and (47), we obtains

Ro

[
∂û

∂t̂
+ (û · ∇)û

]
+ f̂ × û = −∇η̂, (49)
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Ro

(
L

Ld

)2
Dη̂

Dt̂
+

[
1 +Ro

(
L

Ld

)2

η̂

]
∇ · û = 0. (50)

In large scale movement, we assume that Ro � 1 and the scale of the motion is larger than
the deformation scale, that is L2/L2

d � 1. We also assume that Ro L2/L2
d ∼ O(1). Hence if

we write in non-scaling form, (50) and (49) will become

f × u = −g∇η,
Dh

Dt
+ h∇ · u = 0.

After some manipulations, the above equations could be rewritten as

D

Dt

(
f

h

)
= 0, f × u = −g∇η.

The differences between the derivation of planetary geostrophic equation and quasi-geostrophic
equations are that we assume the motion is significantly large than the deformation scale, that
is L2 � L2

d, in planetary geostrophic equations, but which doesn’t hold in quasi-geostrophic
equations.

6. Western boundary layers

Consider the barotropic vorticity equation in the form

∂ζ

∂t
+ J(ψ, ζ) + βv = −rζ + ν∇2ζ + F (x, y) (51)

where ζ = ∇2ψ, v = ∂ψ/∂x, r and ν are constants, and the flow is two-dimensional. We suppose the
fluid is contained in a square container of side a, with 0 ≤ x ≤ a and 0 ≤ y ≤ a and F = −A sinπy/a
where A is a constant. We expect that the nonlinear term and both frictional terms are ’small’,
and we are interested in steady states for which ∂ζ/∂t = 0.

(a) Nondimensionalize these equations, and obtain estimates of the sizes of each term. State ex-
plicitly the conditions under which each of the frictional terms, and the nonlinear term, are
indeed small.

Solution: (51) could be rewritten as

∂ζ

∂t
+ u

∂ζ

∂x
+ v

∂ζ

∂y
+ βv = −rζ + ν∇2ζ + F (x, y) (52)

∂∇2ψ

∂t
− ∂ψ

∂y

∂∇2ψ

∂x
+
∂ψ

∂x

∂∇2ψ

∂y
+ β

∂ψ

∂x
= −r∇2ψ + ν∇2

(
∇2ψ

)
+ F (x, y) (53)

Rescale the variables by setting

(u, v) = U(û, v̂), x = ax̂, y = aŷ, t =
a

U
t̂, ζ =

U

a
ζ̂, ψ = aUψ̂,

where the hatted variables are nondimensional and has the O(1) order. Equation (52) becomes

U2

a2

(
∂ζ̂

∂t̂
+ û

∂ζ̂

∂x̂
+ v̂

∂ζ̂

∂ŷ

)
+ Uβv̂ = −rU

a
ζ̂ + ν

U

a3
∇2ζ̂ + F (ax̂, aŷ) (54)

The advective term of vorticity could be neglected if the ratio

U2

a2

Uβ
=

U

βa2
� 1.

The nonlinear term ν∇2ζ is small comparing to the β-effect if

νU
a3

Uβ
=

ν

βa3
� 1.

The frictional term −rζ could be neglected if

rUa
Uβ

=
r

βa
� 1.
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(b) Neglecting the nonlinear term and both frictional terms, obtain the solution to β ∂ψ∂x = −A sin(πy/a).
Can this solution satisfy the boundary conditions needed if the frictional terms are present.
Explain briefly.
Solution: Integrate at the both sides of β ∂ψ∂x = −A sin(πy/a), and we obtains

β

∫
∂ψ

∂x
dx =

∫
−A sin(πy/a)dx,

=⇒ ψ(x, y) = −A
β
x sin(πy/a) + g(y),

where g(y) is an arbitrary function of integration that represents an arbitrary zonal flow.

If we assume ψ = 0 at x = 0, then
g(y) = 0;

If we assume ψ = 0 at x = a, then g(y) should be

g(y) =
Aa

β
sin(πy/a).

Hence

ψ(x, y) = −A
β
x sin(πy/a) or ψ(x, y) =

A

β
(a− x) sin(πy/a).

If frictional term exists, then it is

−r∇2ψ = −r
(
∂2ψ

∂x2
+
∂2ψ

∂y2

)
= −r

(
Aπ2x

βa2
sin(πy/a) + g′′(y)

)
I think it doesn’t satisfy the boundary conditions needed by frictional terms, because frictional
terms should be largest at boundaries x = 0 or x = a, but small in the interior of the ocean.

(c) Suppose that ν = 0, and neglect the nonlinear term, and assume that the term rζ is indeed
small but nonzero. Show that we can expect a boundary current on one side of the ocean
(which?) and estimate its thickness.

Solution: If ν is small, and the non-linear terms are neglected, then equation (53) will becomes

β
∂ψ

∂x
= −r∇2ψ + F (x, y),

=⇒ β
∂ψ

∂x
= −r∇2ψ −A sin(πy/a).

Assume ψ = ψI + φ, where φ is a boundary layer correction, and ψI will satisfy the Sverdrup
balance, we will have

β
∂(ψI + φ)

∂x
= −r∇2(ψI + φ)−A sin(πy/a).

=⇒ β
∂φ

∂x
+ r∇2(ψI + φ) = 0.

With the scale analysis, we have

∂φ̂

∂x̂
+

r

βa

(
∇2ψ̂I +

∂2φ̂

∂x̂2
+
∂2φ̂

∂ŷ2

)
= 0. (55)

Because the boundary layer correction φ(x̂, ŷ) will vary rapidly with x̂, so we stretch the
x̂-coordinate and let

x̂ = εα or x̂− 1 = εα, (56a)

0 < α <
1

ε
, or − 1

ε
< α < 0, (56b)
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where ε is a small parameter and α is stretched coordinate. We only suppose the φ will be
φ(α, ŷ), hence (55) becomes

1

ε

∂φ̂

∂α
+

r

βa

(
∇2ψ̂I +

1

ε2
∂2φ̂

∂α2
+
∂2α

∂ŷ2

)
= 0. (57)

We choose ε = r
βa , hence the leading-order terms in (57) will be

∂2φ̂

∂α2
+
∂φ̂

∂α
= 0,

the solution of which is
φ̂ = A(ŷ) +B(ŷ)e−α.

The solution indicates that φ will decay in positive α direction when α > 0, and we don’t
choose the solution when α < 0, for it will grow exponentially. Therefore, x = εα will be
chosen, which means that the boundary current will appear in the western side of the ocean.

If we set A(ŷ) = 0, and with dimensional variables the φ is

φ = B(y/a)e−xβ/r.

If we choose ψI(x, y) = A
β (a− x) sin(πy/a), the ψ satisfy

ψ = ψI + φ = 0 at x = 0,

then

φ = −Aa
β

sin(πy/a)e−xβ/r,

and we obtain

ψ =
A

β
(a− x− ae−xβ/r) sin(πy/a).

(d) Now suppose that r = 0, and neglect the nonlinear term. Estimate the size of the boundary
current that now arises.

Solution: If r = 0 and the non-linear terms are neglected (ν 6= 0), then

then equation (53) will becomes

β
∂ψ

∂x
− ν∇2

(
∇2ψ

)
= F (x, y),

=⇒ β
∂ψ

∂x
− ν∇2

(
∇2ψ

)
= A sin(πy/a),

=⇒ β
∂ψ

∂x
− ν

(
∂4ψ

∂x4
+
∂4ψ

∂y4
+ 2

∂4ψ

∂x2∂y2

)
= A sin(πy/a).

Assume ψ = ψI + φ, where φ is a boundary layer correction, and ψI will satisfy the Sverdrup
balance, we will have

β
∂φ

∂x
− ν

(
∇2
(
∇2ψI

)
+
∂4φ

∂x4
+
∂4φ

∂y4
+ 2

∂4φ

∂x2∂y2

)
= 0.

With the scale analysis, we obtains

∂φ̂

∂x̂
− ν

βa3

(
∇2
(
∇2ψ̂I

)
+
∂4φ̂

∂x̂4
+
∂4φ̂

∂ŷ4
+ 2

∂4φ̂

∂x̂2∂ŷ2

)
= 0. (58)

Similar as what we have done in part (c), here we also stretch the x̂-coordinate as shown in
equation (56). Put them into (58), we obtain

1

ε

∂φ̂

∂α̂
− ν

βa3

(
∇2
(
∇2ψ̂I

)
+

1

ε4
∂4φ̂

∂α̂4
+
∂4φ̂

∂ŷ4
+

2

ε2
∂4φ̂

∂α̂2∂ŷ2

)
= 0. (59)
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We choose

ε = 3

√
ν

β

1

a
, ( or

ν

βa3
= ε3)

hence the leading-order terms in (59) will be

∂4φ̂

∂α4
− ∂φ̂

∂α
= 0,

the solution of which is
φ̂ = A(y) +B(y)eα.

Here we will choose x− 1 = εα, that is to say in the eastern boundary.

If we set A(ŷ) = 0, and with dimensional variables the φ is

φ = B(y/a)e(x−a)/
3
√
ν/β .

If we choose ψI(x, y) = −Aβ x sin(πy/a), the ψ satisfy

ψ = ψI + φ = 0 at x = a,

then

φ =
Aa

β
sin(πy/a)e(x−a)/

3
√
ν/β ,

and we obtain

ψ =
A

β

(
ae(x−a)/

3
√
ν/β − x

)
sin(πy/a).
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