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2. (a) Consider a fluid that obeys the hydrostatic relation

∂p

∂z
= −ρg

Suppose also that the fluid is an isothermal ideal gas. Show that the density and pressure
both diminish exponentially with height. What is the e-folding height? (This is also called the
’scale height’ of the atmosphere.) Write down an expression for the height, z, as a function of
pressure.

Solution: According to ideal gas law,

p = ρRT, (1)

Because the ideal gas is isothermal, so T = T0, where T0 is the surface temperature.

Hence
ρ =

p

RT0
.

Plug it into the hydrostatic relation,

dp

dz
= − p

RT0
g

dp

p
= − g

RT0
dz =⇒ d log p = − g

RT0
dz

Integrate the above equation from p0 to p (z from 0 to z), hence∫ p

p0

d log p = −
∫ z

0

g

RT0
dz

log (p/p0) = − g

RT0
z

Therefore,

p = p0 exp

(
− g

RT0
z

)
(2)

Apply the ideal gas law to (2), then

ρ = ρ0 exp

(
− g

RT0
z

)
, (3)

where ρ0 = ps

RT0
.

Based on (2), the z can be written as

z = −RT0

g
log

(
p

p0

)
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(b) Now suppose that the atmosphere has a uniform lapse rate (i.e., dT/dz = −Γ = constant).
Show that the height at a pressure p is given by

z =
T0

Γ

[
1−

(
p0

p

)−RΓ/g
]

where T0is the temperature at z = 0.

Solution: We could get from dT/dz = −Γ that

T = T0 − Γz

Plug it into the idea gas law (1), hence

p = ρR(T0 − Γz),

so the hydrostatic balance equation becomes

dp

dz
= − p

R(T0 − Γz)
g

dp

p
= − g

R(T0 − Γz)
dz =⇒ d log p =

g

RΓ
d log(T0 − Γz)

Integrate the above equation from p0 to p (z from 0 to z), hence

log
p

p0
=

g

RΓ
log

(
1− Γz

T0

)

p = p0

(
1− Γz

T0

) g
RΓ

.

Hence

z =
T0

Γ

[
1−

(
p0

p

)−RΓ/g
]

(c) Are the answers you obtained in these two parts the same as each other in the isothermal
(constant temperature) limit? Explain.

Solution: The two answers are the same in the isothermal limit.

lim
Γ−→0

T0

1−
(

p0

p

)−RΓ/g

Γ
= lim

Γ−→0
T0

−−Rg log
(

p0

p

)(
p0

p

)−RΓ/g

1
= −RT0

g
log

(
p

p0

)

4. (a) In the shallow water equations show that geostrophic flow is associated with a slope of the
surface. Suppose we consider the ocean to be a shallow water fluid, and that there is a
current 100 km wide flowing North-South with a speed of 1m/s. Estimate the variation in the
sea-surface height over the width of the current.

Solution: The momentum equation of shallow water equation is

Du

D t
+ f × u = −g∇η.

The geostrophic balance occurs when the Rossby number U/fL is small, so the momentum
equation becomes

f × ug = −g∇η.
Hence the geostrophic flow is associated with the slope of the surface.

If the flow is in North-South direction, so

fvg = −g ∂η
∂x
,

∂η

∂x
= −fvg

g
,

Substitute vg = −1m/s, f ≈ 10−4s−1, g = 9.8ms−2 into the above equation, so the sea-surface
height gradient is

∂η

∂x
≈ 10−5,

and the height difference at the both sides of flow (100km width) is about 1m.
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(b) In the shallow water equations show that, if the flow is approximately geostrophically balanced,
the energy at large scales is predominantly potential energy and that energy at small scales
is predominantly kinetic energy. Define precisely what ‘large scale’ and ‘small scale’ mean in
this context, and obtain an expression for the transition scale.

Solution: The kinetic energy of a column is

KE =
1

2
ρ0hu

2,

assuming the density is constant (ρ = ρ0), and the potential energy is

PE =

∫ h

0

ρ0gz d z =
1

2
ρ0gh

2.

The ratio between the KE and PE is

KE

PE
=
u2

gh
.

Noting that the scale for each variable is u ∼ U, h ∼ H, so the ratio has scale

KE

PE
∼ U2

gH
. (4)

The geostrophic balance gives
f × ug = −g∇η,

and the scale of η is η ∼ H, so

fU ∼ gH

L
,

and
gH ∼ fUL. (5)

Substitute (5) into (4), the ratio between kinetic and potential energy becomes

KE

PE
∼ U

fL
= Ro,

where Ro is the Rossby number.

The Rossby number Ro � 1 at large scale, that is KE
PE � 1, indicating that the energy is

predominately by potential energy.

The Rossby number Ro � 1 at small scale, that is KE
PE � 1, showing the energy is predomi-

nately by kinetic energy.

5. (a) In an adiabatic shallow water fluid in a rotating reference frame show that the potential
vorticity conservation law is

D

D t

(
ζ + f

η − hb

)
= 0,

where η is the height of the free surface and hb is the height of the bottom topography, both
referenced to the same flat surface.

Solution: The momentum equation of shallow water system is

Du

D t
+ f × u = −g∇η,

∂u

∂t
+ (u · ∇)u + f × u = −g∇η,

where f = fk. Using the vector identity

(u · ∇)u = ∇u2

2
− u× (∇× u),
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then the momentum equation becomes that

∂u

∂t
+ (ω∗ + f)× u = −∇

(
gη +

u2

2

)
,

where ω∗ = ∇× u = ζk. Taking the curl of this gives the vorticity equation

∂ζ

∂t
+ (u · ∇)(ζ + f) = −(f + ζ)∇ · u. (6)

Because f is time independent, so (6) could be rewritten as

D(ζ + f)

D t
=
∂(ζ + f)

∂t
+ (u · ∇)(ζ + f) = −(f + ζ)∇ · u. (7)

The mass conservation equation is

Dh

D t
+ h∇ · u = 0,

where h = η − hb. It could be rewritten as

−(ζ + f)∇ · u =
(ζ + f)

h

Dh

D t
(8)

Combining (7) and (8) gives
D(ζ + f)

D t
=

(ζ + f)

h

Dh

D t
,

that is
D

D t

(
ζ + f

h

)
= 0,

=⇒ D

D t

(
ζ + f

η − hb

)
= 0.

(b) An air column at 60◦N with zero relative vorticity (ζ = 0) stretches from the surface to the
tropopause, which we assume is a rigid lid, at 10 km. The air column moves zonally on to
a plateau 2.5 km high. What is its relative vorticity? Suppose it then moves southwards to
30◦N, staying on the plateau. What is its relative vorticity then? (Assume that the density is
constant.)

Solution: According to the potential vorticity conservation, we assume that

ζ + f

η − hb
= Constant.

At 60◦N, f60◦N = 2×Ω× sin(60◦) ≈ 1.26×10−4s−1. The PV at surface and plateau are equal,
that is

0 + f60◦N

10km
=
ζ2.5km,60◦N + f60◦N

10km− 2.5km
,

so the relative vorticity at plateau is

ζ2.5km,60◦N ≈ −3.1× 10−5s−1.

At 30◦N, f30◦N = 2 × Ω × sin(30◦) ≈ 7.27 × 10−5s−1. The PV at 60◦N and 30◦N are equal,
that is

ζ2.5km,60◦N + f60◦N

10km− 2.5km
=
ζ2.5km,30◦N + f30◦N

10km− 2.5km
,

so the relative vorticity is
ζ2.5km,30◦N ≈ 2.2× 10−5s−1.

6. The shallow water equations, linearized about a state of rest, may be written as

∂u′

∂t
− f0v

′ = −g ∂η
′

∂x
,

∂v′

∂t
+ f0u

′ = −g ∂η
′

∂y
,

∂η′

∂t
+H

(
∂u′

∂x
+
∂v′

∂y

)
= 0
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Suppose there is a solid boundary (e.g., a coastline) at x = 0, with the ocean on one side and land
on the other. Look for solutions that have u′ = 0 everywhere, and with f0 > 0. Show that the
resulting waves are non-dispersive and travel at a speed c =

√
gH. Is the coastline to the left or

to the right of the direction of travel? Suppose that these waves are generated just off the shore of
Portugal. Do they move north or south?

Solution: If u′ = 0 everywhere, then the equations becomes

f0v
′ = g

∂η′

∂x
,

∂v′

∂t
= −g ∂η

′

∂y
,

∂η′

∂t
+H

∂v′

∂y
= 0

Using the second and the third equations above, we could get

∂2v′

∂t2
= −g ∂

∂y

(
∂η′

∂t

)
= c2

∂2v′

∂y2
,

where c =
√
gH. Assuming that

v′ = ṽ ei(ly−ωt),

and substitute it into the wave equation, and we could get the dispersion relationship

ω2 = c2l2 =⇒ ω = cl,

which indicates that the wave is non-dispersive.

The general form of v′ is
v′ = F1(x, y + ct) + F2(x, y − ct),

with corresponding surface displacement

η′ =
√
H/g (−F1(x, y + ct) + F2(x, y − ct))

Substitute v′ and η′ into the first equation of shallow water equations, we could get

f0(F1 + F2) =
√
gH

(
−∂F1

∂x
+
∂F2

∂x

)
,

that is

f0F1 = −
√
gH

∂F1

∂x
,

f0F2 =
√
gH

∂F2

∂x
,

with solutions
F1 = G1(y + ct) e−x/Ld ,

F2 = G2(y − ct) ex/Ld ,

where Ld =
√
gH/f0.

If we consider the flow in half-plane x > 0, then F2 should be neglected for it will grow to infinity
when x goes to infinity. The wave will travel in negative y direction, indicating that the coastline
is to the right of the direction of travel.

If the waves are generated just off the shore of Portugal, the wave will exist in x < 0 half plane, the
solution form F2 should be remained, so the waves will move north.

7.
∂u

∂t
− fv +

∂Φ

∂x
= 0,

∂v

∂t
+ fu+

∂Φ

∂y
= 0,

∂Φ

∂t
+ Φ0

(
∂u

∂x
+
∂v

∂y

)
= 0

To obtain the dispersion relationship, we let

(u, v,Φ) = (ũ, ṽ, Φ̃) ei(kx+ly−ωt),
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and substitute them into the governing equations, giving

−iωũ− fṽ + ikΦ̃ = 0,

−iωṽ + fũ+ ilΦ̃ = 0,

−iωΦ̃ + iΦ0(kũ+ lṽ) = 0.

Rewrite them into matrix format, that is−iω −f ik
f −iω il

iΦ0k iΦ0l −iω

ũṽ
Φ̃

 = 0. (9)

To get non-trivial solutions, the determinant of matrix in (9) shoul be 0, that is

−iω(−ω2 + Φ0l
2) + f(−ifω + Φ0lk) + ik(ifΦ0l − Φ0kω) = 0,

=⇒ ω[ω2 − f2 − Φ0(k2 + l2)] = 0.

For ω = 0, it is the time-independent flow corresponding to the geostrophic balance. For ω2 =
f2 + Φ0(k2 + l2), they are Poincaré waves.

8. (a) Derive an equation for the conservation of energy in the inviscid, adiabatic, Boussinesq equa-
tions.

Solution: The Boussinesq equations are

Dv

D t
+ f × v = −∇φ+ bk, (10a)

∇ · v = 0, (10b)

D b

D t
= 0. (10c)

(10a) can be rewritten as

∂v

∂t
+ (v · ∇)v + f × v = −∇φ+ bk, (11)

and recall that

(v · ∇)v = −v ×w +∇v2

2
,

hence (12) can be rewritten as

∂v

∂t
− v ×w +∇v2

2
+ f × v = −∇φ+ bk, (12)

Taking the dot product of (12) with v yields

1

2

∂v2

∂t
− v · (v ×w) + v · ∇v2

2
+ v · (f × v) = −v · ∇φ+ bv · k,

that is
1

2

∂v2

∂t
− v2

2
∇ · v +∇

(
v
v2

2

)
= φ∇ · v −∇ · (φv) + bw. (13)

Substitute (10b) into (13), we could get

1

2

∂v2

∂t
= −∇ ·

[
v

(
φ+

v2

2

)]
+ bw. (14)

Define the potential Φ = −z, so that ∇Φ = −k.

D Φ

D t
= −∂z

∂t
− u∂z

∂x
− v ∂z

∂y
− w∂z

∂z
= −w, (15)
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and combining this with (10c) gives

D bΦ

D t
= b

D Φ

D t
+ Φ

D b

D t
=
∂bΦ

∂t
+ (v · ∇)(bΦ) = −bw. (16)

Substitute (16) into (14), we could get

∂

∂t

(
v2

2
+ bΦ

)
+∇ ·

[
v

(
φ+

v2

2
+ bΦ

)]
= 0, (17)

that is the form of energy conservation.

(b) Noting that E = v2

2 + bΦ is the energy density, so (17) could be rewritten as

∂E

∂t
+∇ · [v (E + φ)] = 0

The extra term is from the pressure gradient term, because pressure can do work.
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