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Why we need conserved scheme?

@ There are five conservations of shallow water equation, total energy,
total mass, total vorticity, total enstrophy and total angular
momentum.

o Conservation in a discrete scheme of the equation set is very
necessary, and is one of the essential criterions to evaluate the scheme.
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Why we need explicit scheme?

There are two difference schemes, explicit and implicit, in numerical
calculation.

@ Implicit scheme: Implicit schemes are usually stable, but they are
time-consuming due to a number of iterations for getting their
solutions.

@ Explicit scheme: The calculation of explicit scheme is more efficient,
and doesn't need iterations..

PN AR SEER XI#E (CESS) Explicit MultiConservation Finite-Diff Scheme April 22, 2015 5 /27



Shallow Water Equation
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where 0, A are the latitude and longitude respectively; a denotes the radius
of earth, u,v and ¢ represent the zonal wind, meridional wind and
geopotential height; v* = vcos; f* = 2w sinf + ua~' tan, wy is the
angular velocity of the earth.
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Shallow Water Equation
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Five basic constant integrals
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where the area unit ds is defined as: ds = a? cos §d\df, D is the
integration region (here it is the whole spherical surface), e and ¢ are

respectively the kinetic energy and potential vorticity, which are defined as
follows:

1
625(102‘“)2); f:g

PN AR SEER XI#E (CESS)

Explicit MultiConservation Finite-Diff Scheme

April 22, 2015 8 /27



Semi-discrete Equation Set
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Improvement of Semi-discrete Equation Set
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Semi-discrete Equation Set - Conservation of Enstrophy

Proof (1)

If we want to construct ng and 3¢ (£4 = na/) from the semi-discrete
scheme, first we should do
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The conservation of enstrophy in semi-discrete scheme
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The conservation of enstrophy in semi-discrete scheme

Proof (3)
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If we calculate — then we can get
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The conservation of enstrophy in semi-discrete scheme

Proof (4)
If € satisfy
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where the discrete inner product operation ( -, ) is defined as
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then the enstrophy will be conserved, and we will have four conservations.

o
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Implicit scheme with four conservation
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Iteration of the implicit scheme

The implicit solution can be obtained iteratively:
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Generally, it would converge after 6-8 steps or more of iteration.
Obviously, it is time-consuming.
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Construction of Explicit Scheme

In order to save the computing time, the iteration can be broken down
after the 3rd step, and an approximate solution is obtained:
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which conserves the total mass and total potential vorticity naturally. This
approximate solution is unable to conserve the total energy and total
enstrophy exactly due to the broken-down iteration.
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Construction of Explicit Scheme - total energy conservation

To make the total energy conserved, which is essential to ensure the

computational stability, a flexible coefficient 3, is introduced to correct
the approximate solution
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where (3, is determined by the following formula
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Coefficients of 3,

And the coeficient is
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Proof of (3, Coefficients

Proof (Coefficients of 3, equation-1)
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Proof of (3, Coefficients

Proof (Coefficients of 3, equation-2)
Add them up, we can get
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Proof of (3, Coefficients

Proof (Coefficients of 3, equation-3)

Multiply a® AxAg cos 8, and add them according to (i, j), we can get
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Numerical Tests and Results

Table 1: Temporal evolution of the five basic physical integrals simulated by the explicit

multi-conservation finite-difference scheme
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Integration Total energy Total mass Total enstrophy | Total potential Total angular
time (day) (x10'?) (x10%) (x10~10) vorticity momentum (x1010)
0 7.61845750632341 | 1.75248645432350 | 2.00662133399936 0.0 5.82066986554327
10 7.61845750632917 | 1.75248645432350 | 2.00662133505423 | -5.2x10~17 5.82047589834651
20 7.61845750633071 | 1.75248645432347 | 2.00662133551195 | 1.2x10~ 17 5.82054539378767
30 7.61845750633259 | 1.75248645432347 | 2.00662133589375 | 4.0x10~ 17 5.82040192957590
40 7.61845750632594 | 1.75248645432348 | 2.00662133624930 | -1.5x10~17 5.82040766484019
50 7.61845750632493 | 1.75248645432348 | 2.00662133660218 | -9.1x10~17 5.82031332165226
60 7.61845750632882 | 1.75248645432348 | 2.00662133695058 | -1.4x10~10 5.82019225852469
70 7.61845750633128 | 1.75248645432348 | 2.00662133729320 | -1.5x10-1¢ 5.82014362178185
80 7.61845750632727 | 1.75248645432348 | 2.00662133762288 | -6.4x10~17 5.82003761366708
90 7.61845750632524 | 1.75248645432348 | 2.00662133793366 | -2.1x10~ 18 5.82005239603197
100 7.61845750632337 | 1.75248645432349 | 2.00662133825054 | -1.4x10~10 5.81981469815627
1 13 9 AbF16
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Numerical Tests and Results

Table 2:CPU time of the two schemes for 100-day integration on the IBM ThinkPad
T41 Laptop

Scheme Explicit multi- Implicit multi-
conservation scheme conservation scheme
CPU time 261s 814s

Comparing with the performance of the implicit multi-conservation
scheme, the explicit multi-conservation scheme behaves very close to the
implicit scheme, but requires much less computational time (see Table 2).
So the explicit multi-conservation scheme is more practicable.
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Conclusion and Discussion
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Conclusion and Discussion

@ The explicit scheme has improved the calculation effiency, and have 3
conservations theoretically.

@ But the explicit scheme can't conserve total enstrophy and total
angular momentum, so could we construct a new scheme with more
conservations?

@ The explicit scheme is constructed based on A-grid, is it suitable for
B or C grid?

@ Could we apply the explicit scheme to baroclinic equation?
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Thank you!
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