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Background

e Aqueous solubility prediction is important to drug discovery.

e Original method: QSAR (Quantitative Structure-Activity
Relationship) methods

Activity = F(structure) = M(E(structure))

E : Encoding function M : Mapping function
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(http:/ /www.molfunction.com /software5.htm)

BB DR XI#E (CESS) Deep Learning in Chemoinformatics June 8, 2015 3/12



Background - Deep Learning

@ How about autoencoder-based and convolutional architectures?

e Molecular properties should be represented by vectors of fixed length.
e Rely heavily on a good encoding function.

@ Molecules are naturally represented by small graphs of variable
size.
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@ How about autoencoder-based and convolutional architectures?

e Molecular properties should be represented by vectors of fixed length.
e Rely heavily on a good encoding function.

@ Molecules are naturally represented by small graphs of variable
size.

So how should we do?
e Directed acyclic graph recursive neural networks
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Directed Acyclic Graph Recursive Neural Networks

— Sy
Directed acyclic graph(DAG)

Directed acyclic graphs recursive neural nety
(DAG-RNN)

The DAG-RNN approach associates vector variables with the nodes of the
DAG and places a neural network (or any other kind of parametrized
function) on the edges of the DAG to parametrize the relationship between
the corresponding vector variables.
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But the molecules are undirected graphs(UG) and possibly cyclic, how
could we use the DAG-RNN architecture?
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Undirected Graph Recursive Neural Networks (UGRNN)
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Undirected Graph Recursive Neural Networks (UGRNN)

Selubility

Equations :
Gux = M°(i,, G

pal, g0 Opt

N
Gstructure = Z Grk,k = (Dla to
k=1

Sum of eight G vectors to produce the vector Gstrycture = (D1, ..., Dk) _ MO( G )
corresponding to K descriptors learned from the data. The output p - structure

function MO produces the final prediction.
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Data and Results

Prediction Performances and Standard Deviations Using 10-Fold Cross Validation on the Small Delaney Data Set

models R2? std R2  RMSE  std RMSE  AAE  std AAE
UG-RNN 0.92 0.02 0.58 0.07 0.43 0.04
UG-RNN-CR 0.86 0.03 0.79 0.09 0.57 0.06
UG-RNN + log P 0.91 0.02 0.61 0.07 0.46 0.05
UG-RNN-CR + log P 0.91 0.02 0.63 0.05 0.47 0.03
GSE(23) - - - - 0.47 -
2D kernel(param d = 2) 0.91 - 0.61 - 0.44 -

Scatter plot of learned feature vectors for molecules in the small-Delaney;data set.
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Discussion and Conclusions

The performance of the deep learning methods matches or exceeds
the performance of other state-of-the-art methods according to
several evaluation metrics and expose the fundamental limitations
arising from training sets that are too small or too noisy.
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Q& A
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The End

Thank You!
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